


Learn	NodeJS	in	1	Day

By	Krishna	Rungta

Copyright	2016	-	All	Rights	Reserved	–	Krishna	Rungta

ALL	RIGHTS	RESERVED.	No	part	of	this	publication	may	be	reproduced	or	transmitted	in
any	form	whatsoever,	electronic,	or	mechanical,	including	photocopying,	recording,	or	by	any
informational	storage	or	retrieval	system	without	express	written,	dated	and	signed
permission	from	the	author.



Table	Of	Content

Chapter	1:	Introduction

1.	 What	is	node.js
2.	 Why	use	Node.js
3.	 Features	of	Node.js
4.	 When	to	use	and	not	use	Node.js

Chapter	2:	Download	&	Install	Node.js

1.	 How	to	install	node.js
2.	 Installing	node	through	a	package	manager
3.	 Running	your	first	Hello	world	application	in	Node.js

Chapter	3:	Modules

1.	 What	are	modules	in	Node.js
2.	 Using	modules	in	Node.js
3.	 Creating	NPM	modules
4.	 Extending	modules
5.	 Publishing	NPM	Modules
6.	 Managing	third	party	packages	with	npm
7.	 What	is	the	package.json	file

Chapter	4:	Create	Server	and	Get	Data

Chapter	5:	Node.js	with	Express

1.	 What	is	Express.js
2.	 Installing	and	using	Express
3.	 What	are	Routes
4.	 Sample	Web	server	using	express.js

Chapter	6:	Node.js	with	MongoDB

1.	 Node.js	and	NoSQL	Databases
2.	 Using	MongoDB	and	Node.js
3.	 How	to	build	a	node	express	app	with	MongoDB	to	store	and	serve	content

Chapter	7:	Promise,	Generator,	Event	and	Filestream

1.	 What	are	promises



2.	 Callbacks	to	promises
3.	 Generating	promises	with	the	BlueBird	library
4.	 Creating	a	custom	promise
5.	 Callbacks	vs	generators
6.	 Filestream	in	Node.js
7.	 Emitting	Events

Chapter	8:	Testing	with	Jasmine

1.	 Overview	of	Jasmine	for	testing	Node.js	applications
2.	 How	to	use	Jasmine	to	test	Node.js	applications



Chapter	1:	Introduction

The	modern	web	application	has	really	come	a	long	way	over	the	years	with	the	introduction	of
many	popular	frameworks	such	as	bootstrap,	Angular	JS,	etc.	All	of	these	frameworks	are
based	on	the	popular	JavaScript	framework.

But	when	it	came	to	developing	server	based	applications	there	was	just	kind	of	a	void,	and
this	is	where	Node.js	came	into	the	picture.

Node.js	is	also	based	on	the	JavaScript	framework,	but	it	is	used	for	developing	server-based
applications.	While	going	through	the	entire	tutorial,	we	will	look	into	Node.js	in	detail	and
how	we	can	use	it	to	develop	server	based	applications.



What	is	node.js
Node.js	is	an	open-source,	cross-platform	runtime	environment	used	for	development	of
server-side	web	applications.	Node.js	applications	are	written	in	JavaScript	and	can	be	run	on
a	wide	variety	of	operating	systems.

Node.js	is	based	on	an	event-driven	architecture	and	a	non-blocking	Input/Output	API	that	is
designed	to	optimize	an	application's	throughput	and	scalability	for	real-time	web
applications.

Over	a	long	period	of	time,	the	framework	available	for	web	development	were	all	based	on	a
stateless	model.	A	stateless	model	is	where	the	data	generated	in	one	session	(such	as
information	about	user	settings	and	events	that	occurred)	is	not	maintained	for	usage	in	the
next	session	with	that	user.

A	lot	of	work	had	to	be	done	to	maintain	the	session	information	between	requests	for	a	user.
But	with	Node.js	there	is	finally	a	way	for	web	applications	to	have	a	real-time,	two-way
connections,	where	both	the	client	and	server	can	initiate	communication,	allowing	them	to
exchange	data	freely.



Why	use	Node.js
We	will	have	a	look	into	the	real	worth	of	Node.js	in	the	coming	chapters,	but	what	is	it	that
makes	this	framework	so	famous.	Over	the	years,	most	of	the	applications	were	based	on	a
stateless	request-response	framework.	In	these	sort	of	applications,	it	is	up	to	the	developer	to
ensure	the	right	code	was	put	in	place	to	ensure	the	state	of	web	session	was	maintained	while
the	user	was	working	with	the	system.

But	with	Node.js	web	applications,	you	can	now	work	in	real-time	and	have	a	2-way
communication.	The	state	is	maintained,	and	the	either	the	client	or	server	can	start	the
communication.



Features	of	Node.js
Let's	look	at	some	of	the	key	features	of	Node.js

1.	 Asynchronous	event	driven	IO	helps	concurrent	request	handling	–	This	is	probably	the
biggest	selling	points	of	Node.js.	This	feature	basically	means	that	if	a	request	is	received
by	Node	for	some	Input/Output	operation,	it	will	execute	the	operation	in	the	background
and	continue	with	processing	other	requests.

This	is	quite	different	from	other	programming	languages.	A	simple	example	of	this	is	given	in
the	code	below

var	fs	=	require('fs');

								fs.readFile("Sample.txt",function(error,data)

						{

																								console.log("Reading	Data	completed");

});

The	above	code	snippet	looks	at	reading	a	file	called	Sample.txt.	In	other	programming
languages,	the	next	line	of	processing	would	only	happen	once	the	entire	file	is	read.
But	in	the	case	of	Node.js	the	important	fraction	of	code	to	notice	is	the	declaration	of	the
function	('function(error,data)').	This	is	known	as	a	callback	function.
So	what	happens	here	is	that	the	file	reading	operation	will	start	in	the	background.	And
other	processing	can	happen	simultaneously	while	the	file	is	being	read.	Once	the	file	read
operation	is	completed,	this	anonymous	function	will	be	called	and	the	text	"Reading	Data
completed"	will	be	written	to	the	console	log.

2.	 Node	uses	the	V8	JavaScript	Runtime	engine,	the	one	which	is	used	by	Google	Chrome.
Node	has	a	wrapper	over	the	JavaScript	engine	which	makes	the	runtime	engine	much
faster	and	hence	processing	of	requests	within	Node	also	become	faster.

3.	 Handling	of	concurrent	requests	–	Another	key	functionality	of	Node	is	the	ability	to
handle	concurrent	connections	with	a	very	minimal	overhead	on	a	single	process.

4.	 The	Node.js	library	used	JavaScript	–	This	is	another	important	aspect	of	development	in
Node.js.	A	major	part	of	the	development	community	are	already	well	versed	in	javascript,
and	hence,	development	in	Node.js	becomes	easier	for	a	developer	who	knows	javascript.



5.	 There	are	an	Active	and	vibrant	community	for	the	Node.js	framework.	Because	of	the
active	community,	there	are	always	keys	updates	made	available	to	the	framework.	This
helps	to	keep	the	framework	always	up-to-date	with	the	latest	trends	in	web	development.

Who	uses	Node.js

Node.js	is	used	by	a	variety	of	large	companies.	Below	is	a	list	of	a	few	of	them.

Paypal	–	A	lot	of	sites	within	Paypal	have	also	started	the	transition	onto	Node.js.
LinkedIn	-	LinkedIn	is	using	Node.js	to	power	their	Mobile	Servers,	which	powers	the
iPhone,	Android,	and	Mobile	Web	products.
Mozilla	has	implemented	Node.js	to	support	browser	APIs	which	has	half	a	billion	installs.
Ebay	hosts	their	HTTP	API	service	in	Node.js



When	to	use	and	not	use	Node.js
Node.js	is	best	for	usage	in	streaming	or	event-based	real-time	applications	like

1.	 Chat	applications
2.	 Game	servers	–	Fast	and	high-performance	servers	that	need	to	processes	thousands	of

requests	at	a	time,	then	this	is	an	ideal	framework.
3.	 Good	for	collaborative	environment	–	This	is	good	for	environments	which	manage

document.	In	document	management	environment	you	will	have	multiple	people	who
post	their	documents	and	do	constant	changes	by	checking	out	and	checking	in
documents.	So	Node.js	is	good	for	these	environments	because	the	event	loop	in	Node.js
can	be	triggered	whenever	documents	are	changed	in	a	document	managed	environment.

4.	 Advertisement	servers	–	Again	here	you	could	have	thousands	of	request	to	pull
advertisements	from	the	central	server	and	Node.js	can	be	an	ideal	framework	to	handle
this.

5.	 Streaming	servers	–	Another	ideal	scenario	to	use	Node	is	for	multimedia	streaming
servers	wherein	clients	have	request's	to	pull	different	multimedia	contents	from	this
server.

Node.js	is	good	when	you	need	high	levels	of	concurrency	but	less	amount	of	dedicated	CPU
time.

Best	of	all,	since	Node.js	is	built	on	javascript,	it's	best	suited	when	you	build	client-side
applications	which	are	based	on	the	same	javascript	framework.

When	to	not	use	Node.js

Node.js	can	be	used	for	a	lot	of	applications	with	various	purpose,	the	only	scenario	where	it
should	not	be	used	is	if	there	are	long	processing	times	which	is	required	by	the	application.

Node	is	structured	to	be	single	threaded.	If	any	application	is	required	to	carry	out	some	long
running	calculations	in	the	background.	So	if	the	server	is	doing	some	calculation,	it	won't	be
able	to	process	any	other	requests.	As	discussed	above,	Node.js	is	best	when	processing	needs
less	dedicated	CPU	time.



Chapter	2:	Download	&	Install	Node.js

To	start	building	your	Node.js	applications,	the	first	step	is	the	installation	of	the	node.js
framework.	The	Node.js	framework	is	available	for	a	variety	of	operating	systems	right	from
Windows	to	Ubuntu	and	OS	X.	Once	the	Node.js	framework	is	installed	you	can	start	building
your	first	Node.js	applications.

Node.js	also	has	the	ability	to	embedded	external	functionality	or	extended	functionality	by
making	use	of	custom	modules.	These	modules	have	to	be	installed	separately.	An	example	of
a	module	is	the	MongoDB	module	which	allows	you	to	work	with	MongoDB	databases	from
your	Node.js	application.



How	to	install	node.js
The	first	steps	in	using	Node.js	is	the	installation	of	the	Node.js	libraries	on	the	client	system.
To	perform	the	installation	of	Node.js,	perform	the	below	steps;

Step	1)	Go	to	the	site	https://nodejs.org/en/download/	and	download	the	necessary
binary	files.	In	our	example,	we	are	going	to	the	download	the	32-bit	setup	files	for	Node.js.

Step	2)	Double	click	on	the	downloaded	.msi	file	to	start	the	installation.	Click	the	Run	button
in	the	first	screen	to	begin	the	installation.



Step	3)	In	the	next	screen,	click	the	"Next"	button	to	continue	with	the	installation

Step	4)	In	the	next	screen	Accept	the	license	agreement	and	click	on	the	Next	button.



Step	5)	In	the	next	screen,	choose	the	location	where	Node.js	needs	to	be	installed	and	then
click	on	the	Next	button.

1.	 First	enter	the	file	location	for	the	installation	of	Node.js.	This	is	where	the	files	for
Node.js	will	be	stored	after	the	installation.

2.	 Click	on	the	Next	button	to	proceed	ahead	with	the	installation.


	Learn NodeJS in 1 Day
	By Krishna Rungta

	Table Of Content
	Chapter 1: Introduction
	Chapter 2: Download & Install Node.js
	Chapter 3: Modules
	Chapter 4: Create Server and Get Data
	Chapter 5: Node.js with Express
	Chapter 6: Node.js with MongoDB
	Chapter 7: Promise, Generator, Event and Filestream
	Chapter 8: Testing with Jasmine

	What is node.js
	Why use Node.js
	Features of Node.js
	Who uses Node.js

	When to use and not use Node.js
	How to install node.js
	Installing node through a package manager
	Running your first Hello world application in Node.js
	What are modules in Node.js?
	Using modules in Node.js
	Creating NPM modules
	Extending modules
	Managing third party packages with npm
	What is the package.json file
	Node as web server using HTTP
	Handling GET Requests in Node.js
	What is Express.js
	Installing and using Express
	What are Routes
	Sample Web server using express.js
	Node.js and NoSQL Databases
	Using MongoDB and Node.js
	How to build a node express app with MongoDB to store and serve content
	What are promises
	Callbacks to promises
	Dealing with nested promises
	Generating promises with the BlueBird library
	Creating a custom promise
	What are generators
	Callbacks vs. generators
	Filestream in Node.js
	Pipes in Node.js
	Events in Node.js
	Emitting Events
	Overview of Jasmine for testing Node.js applications
	How to use Jasmine to test Node.js applications
	One Last Thing….
	DID YOU ENJOY THE BOOK?

