
Lituz.com

http://www.lituz.com

Inverted chapter dependency graph

Chapter 1
• Functional programming tenets
• Functional features in C#
• Higher-order functions

Chapter 2
• Function purity and side effects
• Purity and concurrency
• Purity and testability

Chapter 3
• Function signatures: notation and design
• Designing types
• The Option type

Chapter 4
• The core functions: Map,
 Bind, ForEach, Where
• Regular vs. elevated types

Chapter 5
• Function composition
• Encoding workflows
• An end-to-end workflow

Chapter 6
• Functional error handling
• Representing outcomes with Either
• The Exceptional and Validation types

Chapter 7
• Partial application and currying
• Modularizing and composing an app
• The Aggregate function

Chapter 8
• Multi-argument functions with elevated types
• The Apply function
• The LINQ query pattern

Chapter 9
• State, identity, and change
• Immutable types
• Immutable data structures

Chapter 10
• Immutable, append-only persistence
• Event-sourcing concepts
• Event-sourcing architecture

Chapter 11
• Lazy computations
• Composing functions monadically
• Continuations

Chapter 12
• Stateful programs
• Stateful computations
• Generating random data

Chapter 13
• Asynchronous computations
• The Traverse function
• Combining different monadic effects

Chapter 14
• Data streams and IObservable
• Creating and transforming streams
• Stateful programsChapter 15

• The need for shared mutable state
• Message-passing concurrency
• Conventional APIs, agent-based implementations

Lituz.com

http://www.lituz.com

Functional Programming in C#

Lituz.com

http://www.lituz.com

Lituz.com

http://www.lituz.com

 Functional Programming in C#

ENRICO BUONANNO

M A N N I N G
SHELTER ISLAND

Lituz.com

http://www.lituz.com

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Marina Michaels
20 Baldwin Road Technical development editor: Joel Kotarski
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Project editor: Kevin Sullivan

Copyeditor: Andy Carroll
Proofreader: Melody Dolab

Technical proofreaders: Paul Louth, Jürgen Hoetzel
Typesetter: Gordan Salinovic

Cover designer: Leslie Haimes
Cartoons: Viseslav Radović,

Richard Sheppard
Graphic illustrations: Chuck Larson

ISBN 9781617293955
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Lituz.com

http://www.manning.com
http://www.lituz.com

 To the little monkey...

Lituz.com

http://www.lituz.com

Lituz.com

http://www.lituz.com

vii

brief contents
PART 1 CORE CONCEPTS ...1

1 ■ Introducing functional programming 3

2 ■ Why function purity matters 31

3 ■ Designing function signatures and types 52

4 ■ Patterns in functional programming 80

5 ■ Designing programs with function composition 102

PART 2 BECOMING FUNCTIONAL ...121

6 ■ Functional error handling 123

7 ■ Structuring an application with functions 149

8 ■ Working effectively with multi-argument functions 177

9 ■ Thinking about data functionally 202

10 ■ Event sourcing: a functional approach to persistence 229

PART 3 ADVANCED TECHNIQUES..255

11 ■ Lazy computations, continuations, and the beauty
of monadic composition 257

12 ■ Stateful programs and stateful computations 279

Lituz.com

http://www.lituz.com

BRIEF CONTENTSviii

13 ■ Working with asynchronous computations 295

14 ■ Data streams and the Reactive Extensions 320

15 ■ An introduction to message-passing concurrency 345

Lituz.com

http://www.lituz.com

ix

contents
preface xvii
acknowledgments xix
about this book xx

PART 1 CORE CONCEPTS ...1

1 Introducing functional programming 3
1.1 What is this thing called functional programming? 4

Functions as first-class values 4 ■ Avoiding state mutation 5
Writing programs with strong guarantees 6

1.2 How functional a language is C#? 9
The functional nature of LINQ 10 ■ Functional features in C# 6
and C# 7 11 ■ A more functional future for C#? 13

1.3 Thinking in functions 14
Functions as maps 14 ■ Representing functions in C# 15

1.4 Higher-order functions 19
Functions that depend on other functions 19 ■ Adapter
functions 21 ■ Functions that create other functions 22

Lituz.com

http://www.lituz.com

CONTENTSx

1.5 Using HOFs to avoid duplication 23
Encapsulating setup and teardown into a HOF 25 ■ Turning the
using statement into a HOF 26 ■ Tradeoffs of HOFs 27

1.6 Benefits of functional programming 29

2 Why function purity matters 31
2.1 What is function purity? 32

Purity and side effects 32 ■ Strategies for managing side
effects 33

2.2 Purity and concurrency 35
Pure functions parallelize well 36 ■ Parallelizing impure
functions 38 ■ Avoiding state mutation 39

2.3 Purity and testability 41
In practice: a validation scenario 41 ■ Bringing impure functions
under test 43 ■ Why testing impure functions is hard 45
Parameterized unit tests 46 ■ Avoiding header interfaces 47

2.4 Purity and the evolution of computing 50

3 Designing function signatures and types 52
3.1 Function signature design 53

Arrow notation 53 ■ How informative is a signature? 54

3.2 Capturing data with data objects 55
Primitive types are often not specific enough 56 ■ Constraining
inputs with custom types 57 ■ Writing “honest” functions 59
Composing values with tuples and objects 60

3.3 Modeling the absence of data with Unit 61
Why void isn’t ideal 61 ■ Bridging the gap between Action and
Func with Unit 63

3.4 Modeling the possible absence of data with Option 65
The bad APIs you use every day 65 ■ An introduction to the
Option type 66 ■ Implementing Option 68 ■ Gaining
robustness by using Option instead of null 72 ■ Option as the
natural result type of partial functions 73

4 Patterns in functional programming 80
4.1 Applying a function to a structure’s inner values 81

Mapping a function onto a sequence 81 ■ Mapping a function
onto an Option 82 ■ How Option raises the level of
abstraction 84 ■ Introducing functors 85

Lituz.com

http://www.lituz.com

CONTENTS xi

4.2 Performing side effects with ForEach 86

4.3 Chaining functions with Bind 88
Combining Option-returning functions 89 ■ Flattening nested
lists with Bind 90 ■ Actually, it’s called a monad 91 ■ The
Return function 92 ■ Relation between functors and monads 92

4.4 Filtering values with Where 93

4.5 Combining Option and IEnumerable with Bind 94

4.6 Coding at different levels of abstraction 96
Regular vs. elevated values 96 ■ Crossing levels of abstraction 97
Map vs. Bind, revisited 98 ■ Working at the right level of
abstraction 99

5 Designing programs with function composition 102
5.1 Function composition 103

Brushing up on function composition 103 ■ Method
chaining 104 ■ Composition in the elevated world 104

5.2 Thinking in terms of data flow 105
Using LINQ’s composable API 105 ■ Writing functions that
compose well 107

5.3 Programming workflows 108
A simple workflow for validation 109 ■ Refactoring with data flow
in mind 110 ■ Composition leads to greater flexibility 111

5.4 An introduction to functional domain modeling 112

5.5 An end-to-end server-side workflow 114
Expressions vs. statements 115 ■ Declarative vs. imperative 116
The functional take on layering 117

PART 2 BECOMING FUNCTIONAL................................121

6 Functional error handling 123
6.1 A safer way to represent outcomes 124

Capturing error details with Either 124 ■ Core functions for
working with Either 128 ■ Comparing Option and Either 129

6.2 Chaining operations that may fail 130

6.3 Validation: a perfect use case for Either 132
Choosing a suitable representation for errors 132 ■ Defining an
Either-based API 134 ■ Adding validation logic 134

Lituz.com

http://www.lituz.com

CONTENTSxii

6.4 Representing outcomes to client applications 136
Exposing an Option-like interface 137 ■ Exposing an Either-like
interface 138 ■ Returning a result DTO 139

6.5 Variations on the Either theme 140
Changing between different error representations 141 ■ Specialized
versions of Either 142 ■ Refactoring to Validation and
Exceptional 143 ■ Leaving exceptions behind? 146

7 Structuring an application with functions 149
7.1 Partial application: supplying arguments piecemeal 150

Manually enabling partial application 152 ■ Generalizing
partial application 153 ■ Order of arguments matters 154

7.2 Overcoming the quirks of method resolution 155

7.3 Curried functions: optimized for partial application 157

7.4 Creating a partial-application-friendly API 159
Types as documentation 161 ■ Particularizing the data access
function 162

7.5 Modularizing and composing an application 164
Modularity in OOP 165 ■ Modularity in FP 167 ■ Comparing
the two approaches 169 ■ Composing the application 170

7.6 Reducing a list to a single value 171
LINQ’s Aggregate method 171 ■ Aggregating validation
results 173 ■ Harvesting validation errors 174

8 Working effectively with multi-argument functions 177
8.1 Function application in the elevated world 178

Understanding applicatives 180 ■ Lifting functions 182
An introduction to property-based testing 183

8.2 Functors, applicatives, monads 185

8.3 The monad laws 187
Right identity 187 ■ Left identity 188 ■ Associativity 189
Using Bind with multi-argument functions 190

8.4 Improving readability by using LINQ with any monad 190
Using LINQ with arbitrary functors 191 ■ Using LINQ with
arbitrary monads 192 ■ let, where, and other LINQ clauses 195

8.5 When to use Bind vs. Apply 197
Validation with smart constructors 197 ■ Harvesting errors with the
applicative flow 198 ■ Failing fast with the monadic flow 199

Lituz.com

http://www.lituz.com

CONTENTS xiii

9 Thinking about data functionally 202
9.1 The pitfalls of state mutation 203

9.2 Understanding state, identity, and change 206
Some things never change 206 ■ Representing change without
mutation 208

9.3 Enforcing immutability 211
Immutable all the way down 213 ■ Copy methods without
boilerplate? 214 ■ Leveraging F# for data types 216
Comparing strategies for immutability: an ugly contest 217

9.4 A short introduction to functional data structures 218
The classic functional linked list 219 ■ Binary trees 223

10 Event sourcing: a functional approach to persistence 229
10.1 Thinking functionally about data storage 230

Why data storage should be append-only 230 ■ Relax, and forget
about storing state 231

10.2 Event sourcing basics 232
Representing events 233 ■ Persisting events 233 ■ Representing
state 234 ■ An interlude on pattern matching 235
Representing state transitions 238 ■ Reconstructing the current
state from past events 240

10.3 Architecture of an event-sourced system 241
Handling commands 242 ■ Handling events 245 ■ Adding
validation 246 ■ Creating views of the data from events 248

10.4 Comparing different approaches to immutable storage 251
Datomic vs. Event Store 252 ■ How event-driven is your domain? 252

PART 3 ADVANCED TECHNIQUES255

11 Lazy computations, continuations, and the beauty of monadic
composition 257
11.1 The virtue of laziness 258

Lazy APIs for working with Option 259 ■ Composing lazy
computations 261

11.2 Exception handling with Try 263
Representing computations that may fail 263 ■ Safely extracting
information from a JSON object 264 ■ Composing computations that
may fail 266 ■ Monadic composition: what does it mean? 267

Lituz.com

http://www.lituz.com

CONTENTSxiv

11.3 Creating a middleware pipeline for DB access 268
Composing functions that perform setup/teardown 268 ■ A recipe
against the pyramid of doom 270 ■ Capturing the essence of a
middleware function 270 ■ Implementing the query pattern for
middleware 272 ■ Adding middleware that times the operation 275
Adding middleware that manages a DB transaction 276

12 Stateful programs and stateful computations 279
12.1 Programs that manage state 280

Maintaining a cache of retrieved resources 281 ■ Refactoring for
testability and error handling 283 ■ Stateful computations 285

12.2 A language for generating random data 285
Generating random integers 287 ■ Generating other
primitives 287 ■ Generating complex structures 289

12.3 A general pattern for stateful computations 291

13 Working with asynchronous computations 295
13.1 Asynchronous computations 296

The need for asynchrony 296 ■ Representing asynchronous
operations with Task 297 ■ Task as a container for a future
value 298 ■ Handling failure 300 ■ An HTTP API for
currency conversion 302 ■ If it fails, try a few more times 303
Running asynchronous operations in parallel 304

13.2 Traversables: working with lists of elevated values 306
Validating a list of values with monadic Traverse 307
Harvesting validation errors with applicative Traverse 309
Applying multiple validators to a single value 311 ■ Using
Traverse with Task to await multiple results 312 ■ Defining
Traverse for single-value structures 313

13.3 Combining asynchrony and validation (or any other two
monadic effects) 315

The problem of stacked monads 315 ■ Reducing the number of
effects 316 ■ LINQ expressions with a monad stack 318

14 Data streams and the Reactive Extensions 320
14.1 Representing data streams with IObservable 321

A sequence of values in time 321 ■ Subscribing to an IObservable 322

14.2 Creating IObservables 324
Creating a timer 324 ■ Using Subject to tell an IObservable when it
should signal 325 ■ Creating IObservables from callback-based
subscriptions 326 ■ Creating IObservables from simpler structures 327

Lituz.com

http://www.lituz.com

CONTENTS xv

14.3 Transforming and combining data streams 328
Stream transformations 328 ■ Combining and partitioning
streams 330 ■ Error handling with IObservable 332
Putting it all together 334

14.4 Implementing logic that spans multiple events 335
Detecting sequences of pressed keys 336 ■ Reacting to multiple
event sources 338 ■ Notifying when an account becomes
overdrawn 340

14.5 When should you use IObservable? 343

15 An introduction to message-passing concurrency 345
15.1 The need for shared mutable state 346

15.2 Understanding message-passing concurrency 347
Implementing agents in C# 349 ■ Getting started with
agents 351 ■ Using agents to handle concurrent requests 352
Agents vs. actors 356

15.3 Functional APIs, agent-based implementations 358
Agents as implementation details 358 ■ Hiding agents behind a
conventional API 360

15.4 Message-passing concurrency in LOB applications 361
Using an agent to synchronize access to account data 362
Keeping a registry of accounts 363 ■ An agent is not an
object 364 ■ Putting it all together 367

Epilogue: what next? 371

index 373

Lituz.com

http://www.lituz.com

Lituz.com

http://www.lituz.com

xvii

preface
Today, functional programming (FP) is no longer brooding in the research depart-
ments of universities; it has become an important and exciting part of mainstream
programming. The majority of the languages and frameworks created in the last
decade are functional, leading some to predict that the future of programming is
functional. Meanwhile, popular object-oriented languages like C# and Java see the
introduction of more functional features with every new release, enabling a multipara-
digm programming style.

 And yet, adoption in the C# community has been slow. Why is this so? One reason,
I believe, is the lack of good literature:

■ Most FP literature is written in and for functional languages, especially Haskell.
For developers with a background in OOP, this poses a programming-language
barrier to learning the concepts. Even though many of the concepts apply to a
multiparadigm language like C#, learning a new paradigm and a new language
at once is a tall order.

■ Even more importantly, most of the books in the literature tend to illustrate
functional techniques and concepts with examples from the domains of mathe-
matics or computer science. For the majority of programmers who work on
line-of-business (LOB) applications day in and day out, this creates a domain
gap and leaves them wondering how relevant these techniques may be for real-
world applications.

Lituz.com

http://www.lituz.com

Lituz.com

umirzoq2010@outlook.com
Typewritten text
�

umirzoq2010@outlook.com
Typewritten text
- Lituz.com Elektron kitoblar

umirzoq2010@outlook.com
Typewritten text
To'liq qismini Shu tugmani bosish orqali sotib oling!

http://www.lituz.com
https://lituz.com/product/functional-programming-in-c-how-to-write-better-c-code-by-enrico-buonanno/

	Functional Programming in C#
	brief contents
	contents
	preface

