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xvii

preface
Today, functional programming (FP) is no longer brooding in the research depart-
ments of universities; it has become an important and exciting part of mainstream
programming. The majority of the languages and frameworks created in the last
decade are functional, leading some to predict that the future of programming is
functional. Meanwhile, popular object-oriented languages like C# and Java see the
introduction of more functional features with every new release, enabling a multipara-
digm programming style.

 And yet, adoption in the C# community has been slow. Why is this so? One reason,
I believe, is the lack of good literature:

■ Most FP literature is written in and for functional languages, especially Haskell.
For developers with a background in OOP, this poses a programming-language
barrier to learning the concepts. Even though many of the concepts apply to a
multiparadigm language like C#, learning a new paradigm and a new language
at once is a tall order.

■ Even more importantly, most of the books in the literature tend to illustrate
functional techniques and concepts with examples from the domains of mathe-
matics or computer science. For the majority of programmers who work on
line-of-business (LOB) applications day in and day out, this creates a domain
gap and leaves them wondering how relevant these techniques may be for real-
world applications.
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