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Preface

This sixth edition of ‘Higher Engineering Mathe-

matics’ covers essential mathematical material suitable

for students studying Degrees, Foundation Degrees,

Higher National Certificate and Diploma courses in

Engineering disciplines.

In this edition the material has been ordered into the

following twelve convenient categories: number and

algebra, geometry and trigonometry, graphs, complex

numbers, matrices and determinants, vector geometry,

differential calculus, integral calculus, differential equa-

tions, statistics and probability, Laplace transforms and

Fourier series. New material has been added on log-

arithms and exponential functions, binary, octal and

hexadecimal, vectors and methods of adding alternat-

ing waveforms. Another feature is that a free Internet

download is available of a sample (over 1100) of the

further problems contained in the book.

The primary aim of the material in this text is to

provide the fundamental analytical and underpinning

knowledge and techniques needed to successfully com-

plete scientific and engineering principles modules of

Degree, Foundation Degree and Higher National Engi-

neering programmes. The material has been designed

to enable students to use techniques learned for the

analysis, modelling and solution of realistic engineering

problems at Degree and Higher National level. It also

aims to provide some of the more advanced knowledge

required for those wishing to pursue careers in mechan-

ical engineering, aeronautical engineering, electronics,

communications engineering, systems engineering and

all variants of control engineering.

In Higher Engineering Mathematics 6th Edition, the-

ory is introduced in each chapter by a full outline of

essential definitions, formulae, laws, procedures etc.

The theory is kept to a minimum, for problem solving is

extensively used to establish and exemplify the theory.

It is intended that readers will gain real understand-

ing through seeing problems solved and then through

solving similar problems themselves.

Access to software packages such as Maple, Mathemat-

ica and Derive, or a graphics calculator, will enhance

understanding of some of the topics in this text.

Each topic considered in the text is presented in a way

that assumes in the reader only knowledge attained in

BTEC National Certificate/Diploma, or similar, in an

Engineering discipline.

‘Higher Engineering Mathematics 6th Edition’ pro-

vides a follow-up to ‘Engineering Mathematics 6th

Edition’.

This textbook contains some 900 worked prob-

lems, followed by over 1760 further problems (with

answers), arranged within 238 Exercises. Some 432

line diagrams further enhance understanding.

A sample of worked solutions to over 1100 of the fur-

ther problems has been prepared and can be accessed

free via the Internet (see next page).

At the end of the text, a list of Essential Formulae is

included for convenience of reference.

At intervals throughout the text are some 19 Revision

Tests (plus two more in the website chapters) to check

understanding. For example, Revision Test 1 covers

the material in Chapters 1 to 4, Revision Test 2 cov-

ers the material in Chapters 5 to 7, Revision Test 3

covers the material in Chapters 8 to 10, and so on. An

Instructor’s Manual, containing full solutions to the

Revision Tests, is available free to lecturers adopting

this text (see next page).

Due to restriction of extent, five chapters that appeared

in the fifth edition have been removed from the text

and placed on the website. For chapters on Inequali-

ties, Boolean algebra and logic circuits, Sampling and

estimation theories, Significance testing and Chi-square

and distribution-free tests (see next page).

‘Learning by example’ is at the heart of ‘Higher

Engineering Mathematics 6th Edition’.

JOHN BIRD

Royal Naval School of Marine Engineering,

HMS Sultan,

formerly University of Portsmouth

and Highbury College, Portsmouth
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xiv Preface

Free web downloads

Extra material available on the Internet at:

www.booksite.elsevier.com/newnes/bird.

It is recognised that the level of understanding

of algebra on entry to higher courses is often

inadequate. Since algebra provides the basis of so

much of higher engineering studies, it is a situation

that often needs urgent attention. Lack of space

has prevented the inclusion of more basic algebra

topics in this textbook; it is for this reason that

some algebra topics – solution of simple, simul-

taneous and quadratic equations and transposition

of formulae – have been made available to all via

the Internet. Also included is a Remedial Algebra

Revision Test to test understanding. To access the

Algebra material visit the website.

Five extra chapters

Chapters on Inequalities, Boolean Algebra and

logic circuits, Sampling and Estimation theo-

ries, Significance testing, and Chi-square and

distribution-free tests are available to download at

the website.

Sample of worked Solutions to Exercises

Within the text (plus the website chapters) are

some 1900 further problems arranged within

260 Exercises. A sample of over 1100 worked

solutions has been prepared and can be accessed

free via the Internet. To access these worked

solutions visit the website.

Instructor’s manual

This provides fully worked solutions and mark

scheme for all the Revision Tests in this book

(plus 2 from the website chapters), together with

solutions to the Remedial Algebra Revision Test

mentioned above. The material is available to lec-

turers only. To obtain a password please visit the

website with the following details: course title,

number of students, your job title and work postal

address.

To download the Instructor’s Manual visit the

website and enter the book title in the search box.
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Syllabus Guidance

This textbook is written for undergraduate engineering degree and foundation degree courses;

however, it is also most appropriate for HNC/D studies and three syllabuses are covered.

The appropriate chapters for these three syllabuses are shown in the table below.

Chapter Analytical Further Engineering
Methods Analytical Mathematics
for Methods for
Engineers Engineers

1. Algebra ×

2. Partial fractions ×

3. Logarithms ×

4. Exponential functions ×

5. Hyperbolic functions ×

6. Arithmetic and geometric progressions ×

7. The binomial series ×

8. Maclaurin’s series ×

9. Solving equations by iterative methods ×

10. Binary, octal and hexadecimal ×

11. Introduction to trigonometry ×

12. Cartesian and polar co-ordinates ×

13. The circle and its properties ×

14. Trigonometric waveforms ×

15. Trigonometric identities and equations ×

16. The relationship between trigonometric and hyperbolic ×
functions

17. Compound angles ×

18. Functions and their curves ×

19. Irregular areas, volumes and mean values of waveforms ×

20. Complex numbers ×

21. De Moivre’s theorem ×

22. The theory of matrices and determinants ×

23. The solution of simultaneous equations by matrices and ×
determinants

24. Vectors ×

25. Methods of adding alternating waveforms ×

(Continued )
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Chapter Analytical Further Engineering
Methods Analytical Mathematics
for Methods for
Engineers Engineers

26. Scalar and vector products ×

27. Methods of differentiation ×

28. Some applications of differentiation ×

29. Differentiation of parametric equations

30. Differentiation of implicit functions ×

31. Logarithmic differentiation ×

32. Differentiation of hyperbolic functions ×

33. Differentiation of inverse trigonometric and hyperbolic ×
functions

34. Partial differentiation ×

35. Total differential, rates of change and small changes ×

36. Maxima, minima and saddle points for functions of two ×
variables

37. Standard integration ×

38. Some applications of integration ×

39. Integration using algebraic substitutions ×

40. Integration using trigonometric and hyperbolic ×
substitutions

41. Integration using partial fractions ×

42. The t = tan θ/2 substitution

43. Integration by parts ×

44. Reduction formulae ×

45. Numerical integration ×

46. Solution of first order differential equations by separation of ×
variables

47. Homogeneous first order differential equations

48. Linear first order differential equations ×

49. Numerical methods for first order differential equations × ×

50. Second order differential equations of the form ×

a
d2y

dx2
+ b

dy

dx
+ cy = 0

51. Second order differential equations of the form ×

a
d2y

dx2
+ b

dy

dx
+ cy = f (x)

52. Power series methods of solving ordinary differential equations ×

53. An introduction to partial differential equations ×

54. Presentation of statistical data ×

(Continued )
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Chapter Analytical Further Engineering
Methods Analytical Mathematics
for Methods for
Engineers Engineers

55. Measures of central tendency and dispersion ×

56. Probability ×

57. The binomial and Poisson distributions ×

58. The normal distribution ×

59. Linear correlation ×

60. Linear regression ×

61. Introduction to Laplace transforms ×

62. Properties of Laplace transforms ×

63. Inverse Laplace transforms ×

64. Solution of differential equations using Laplace transforms ×

65. The solution of simultaneous differential equations using ×
Laplace transforms

66. Fourier series for periodic functions of period 2π ×

67. Fourier series for non-periodic functions over range 2π ×

68. Even and odd functions and half-range Fourier series ×

69. Fourier series over any range ×

70. A numerical method of harmonic analysis ×

71. The complex or exponential form of a Fourier series ×

Website Chapters

72. Inequalities

73. Boolean algebra and logic circuits ×

74. Sampling and estimation theories ×

75. Significance testing ×

76. Chi-square and distribution-free tests ×
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Chapter 1

Algebra

1.1 Introduction

In this chapter, polynomial division and the factor

and remainder theorems are explained (in Sections 1.4

to 1.6). However, before this, some essential algebra

revision on basic laws and equations is included.

For further Algebra revision, go to website:

http://books.elsevier.com/companions/0750681527

1.2 Revision of basic laws

(a) Basic operations and laws of indices

The laws of indices are:

(i) am × an = am+n (ii)
am

an
= am−n

(iii) (am)n = am×n (iv) a
m
n = n

√
am

(v) a−n =
1

an
(vi) a0 = 1

Problem 1. Evaluate 4a2bc3−2ac when a =2,

b = 1
2 and c = 1 1

2

4a2bc3 − 2ac = 4(2)2

(

1

2

)(

3

2

)3

− 2(2)

(

3

2

)

=
4 × 2 × 2 × 3 × 3 × 3

2 × 2 × 2 × 2
−

12

2

= 27 − 6 = 21

Problem 2. Multiply 3x + 2y by x − y.

3x + 2y

x − y

Multiply by x → 3x2 + 2x y

Multiply by −y → −3x y − 2y2

Adding gives: 3x2
− xy − 2y2

Alternatively,

(3x + 2y)(x − y) = 3x2 − 3x y + 2x y − 2y2

= 3x2
− xy − 2y2

Problem 3. Simplify
a3b2c4

abc−2
and evaluate when

a = 3, b = 1
8 and c = 2.

a3b2c4

abc−2
= a3−1b2−1c4−(−2) = a2bc6

When a = 3, b = 1
8 and c = 2,

a2bc6 = (3)2
(

1
8

)

(2)6 = (9)

(

1
8

)

(64) = 72

Problem 4. Simplify
x2 y3 + x y2

x y

x2 y3 + x y2

x y
=

x2 y3

x y
+

x y2

x y

= x2−1 y3−1 + x1−1 y2−1

= xy2
+y or y(xy + 1)
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Problem 5. Simplify
(x2√y)(

√
x 3

√

y2)

(x5 y3)
1
2

(x2√y)(
√

x 3
√

y2)

(x5 y3)
1
2

=
x2 y

1
2 x

1
2 y

2
3

x
5
2 y

3
2

= x2+ 1
2
− 5

2 y
1
2
+ 2

3
− 3

2

= x0 y− 1
3

= y−
1
3 or

1

y
1
3

or
1

3
√

y

Now try the following exercise

Exercise 1 Revision of basic operations

and laws of indices

1. Evaluate 2ab + 3bc − abc when a = 2,

b = −2 and c = 4. [−16]

2. Find the value of 5 pq2r3 when p = 2
5

,

q = −2 and r = −1. [−8]

3. From 4x − 3y + 2z subtract x + 2y − 3z.

[3x − 5y + 5z]

4. Multiply 2a − 5b + c by 3a + b.

[6a2 − 13ab + 3ac − 5b2 + bc]

5. Simplify (x2 y3z)(x3 yz2) and evaluate when

x = 1
2

, y = 2 and z = 3. [x5 y4z3,13 1
2
]

6. Evaluate (a
3
2 bc−3)(a

1
2 b− 1

2 c) when a =3,

b = 4 and c = 2. [±4 1
2

]

7. Simplify
a2b + a3b

a2b2

[

1 + a

b

]

8. Simplify
(a3b

1
2 c− 1

2 )(ab)
1
3

(
√

a3
√

b c)
[

a
11
6 b

1
3 c− 3

2 or
6
√

a
11 3

√
b

√
c3

]

(b) Brackets, factorization and precedence

Problem 6. Simplify a2− (2a − ab)− a(3b + a).

a2− (2a − ab)− a(3b + a)

= a2 − 2a + ab − 3ab − a2

= −2a − 2ab or −2a(1 + b)

Problem 7. Remove the brackets and simplify the

expression:

2a − [3{2(4a − b)− 5(a + 2b)}+ 4a].

Removing the innermost brackets gives:

2a − [3{8a − 2b − 5a − 10b}+ 4a]

Collecting together similar terms gives:

2a − [3{3a − 12b}+ 4a]

Removing the ‘curly’ brackets gives:

2a − [9a − 36b + 4a]

Collecting together similar terms gives:

2a − [13a − 36b]

Removing the square brackets gives:

2a − 13a + 36b = −11a+36b or

36b− 11a

Problem 8. Factorize (a) x y − 3xz

(b) 4a2 + 16ab3 (c) 3a2b − 6ab2 + 15ab.

(a) x y − 3xz = x(y − 3z)

(b) 4a2 + 16ab3 = 4a(a + 4b3)

(c) 3a2b − 6ab2 + 15ab = 3ab(a − 2b + 5)

Problem 9. Simplify 3c + 2c × 4c + c ÷ 5c − 8c.

The order of precedence is division, multiplica-

tion, addition and subtraction (sometimes remembered

by BODMAS). Hence
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3c + 2c × 4c + c ÷ 5c − 8c

= 3c + 2c × 4c +
( c

5c

)

− 8c

= 3c + 8c2 +
1

5
− 8c

= 8c2
− 5c +

1

5
or c(8c − 5)+

1

5

Problem 10. Simplify

(2a − 3)÷4a +5 × 6−3a.

(2a − 3)÷4a + 5 × 6 − 3a

=
2a − 3

4a
+ 5 × 6 − 3a

=
2a − 3

4a
+ 30 − 3a

=
2a

4a
−

3

4a
+ 30 − 3a

=
1

2
−

3

4a
+ 30 − 3a = 30

1

2
−

3

4a
− 3a

Now try the following exercise

Exercise 2 Further problems on brackets,

factorization and precedence

1. Simplify 2( p + 3q − r)− 4(r − q + 2 p)+ p.

[−5 p + 10q − 6r]

2. Expand and simplify (x + y)(x − 2y).

[x2 − x y − 2y2]

3. Remove the brackets and simplify:

24 p − [2{3(5 p − q)− 2( p + 2q)}+ 3q].

[11q − 2 p]

4. Factorize 21a2b2 − 28ab. [7ab(3ab − 4)]

5. Factorize 2x y2 + 6x2 y + 8x3 y.

[2x y(y + 3x + 4x2)]

6. Simplify 2y + 4 ÷ 6y + 3 × 4 − 5y.
[

2

3y
− 3y + 12

]

7. Simplify 3 ÷ y + 2 ÷ y − 1.

[

5

y
− 1

]

8. Simplify a2 − 3ab × 2a ÷ 6b + ab. [ab]

1.3 Revision of equations

(a) Simple equations

Problem 11. Solve 4 − 3x = 2x − 11.

Since 4 − 3x = 2x − 11 then 4 + 11 = 2x + 3x

i.e. 15 = 5x from which, x =
15

5
= 3

Problem 12. Solve

4(2a − 3)− 2(a − 4) = 3(a − 3)− 1.

Removing the brackets gives:

8a − 12 − 2a + 8 = 3a − 9 − 1

Rearranging gives:

8a − 2a − 3a = −9 − 1 + 12 − 8

i.e. 3a = −6

and a =
−6

3
= −2

Problem 13. Solve
3

x − 2
=

4

3x + 4
.

By ‘cross-multiplying’: 3(3x + 4)= 4(x − 2)

Removing brackets gives: 9x + 12= 4x − 8

Rearranging gives: 9x − 4x = −8 − 12

i.e. 5x = −20

and x =
−20

5

= −4

Problem 14. Solve

(
√

t + 3
√

t

)

= 2.
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√
t

(
√

t + 3
√

t

)

= 2
√

t

i.e.
√

t + 3 = 2
√

t

and 3= 2
√

t −
√

t

i.e. 3=
√

t

and 9= t

(b) Transposition of formulae

Problem 15. Transpose the formula v = u +
f t

m
to make f the subject.

u +
f t

m
= v from which,

f t

m
= v − u

and m

(

f t

m

)

= m(v − u)

i.e. f t = m(v − u)

and f =
m

t
(v − u)

Problem 16. The impedance of an a.c. circuit is

given by Z =
√

R2 + X 2. Make the reactance X the

subject.

√

R2 + X 2 = Z and squaring both sides gives

R2 + X 2 = Z 2, from which,

X 2 = Z 2 − R2 and reactance X =

√

Z2
−R2

Problem 17. Given that
D

d
=

√

(

f + p

f − p

)

,

express p in terms of D, d and f .

Rearranging gives:

√

(

f + p

f − p

)

=
D

d

Squaring both sides gives:
f + p

f − p
=

D2

d2

‘Cross-multiplying’ gives:

d2( f + p)= D2( f − p)

Removing brackets gives:

d2 f + d2 p = D2 f − D2 p

Rearranging gives: d2 p + D2 p = D2 f − d2 f

Factorizing gives: p(d2 + D2)= f (D2 − d2)

and p=
f (D2

−d2)

(d2 +D2)

Now try the following exercise

Exercise 3 Further problems on simple

equations and transposition of formulae

In problems 1 to 4 solve the equations

1. 3x − 2 − 5x = 2x − 4.
[

1
2

]

2. 8 + 4(x − 1)− 5(x − 3) = 2(5 − 2x).

[−3]

3.
1

3a − 2
+

1

5a + 3
= 0.

[

−1
8

]

4.
3
√

t

1 −
√

t
= −6. [4]

5. Transpose y =
3(F − f )

L
. for f .

[

f =
3F − yL

3
or f = F −

yL

3

]

6. Make l the subject of t = 2π

√

1

g
.

[

l =
t2g

4π2

]

7. Transpose m =
µL

L + rC R
for L .

[

L =
mrC R

µ− m

]

8. Make r the subject of the formula

x

y
=

1 + r2

1 − r2
.

[

r =

√

(

x − y

x + y

)

]

(c) Simultaneous equations

Problem 18. Solve the simultaneous equations:

7x − 2y = 26 (1)

6x + 5y = 29. (2)
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5×equation (1) gives:

35x − 10y = 130 (3)

2×equation (2) gives:

12x + 10y = 58 (4)

equation (3)+equation (4) gives:

47x + 0 = 188

from which, x =
188

47
= 4

Substituting x = 4 in equation (1) gives:

28 − 2y = 26

from which, 28 − 26 = 2y and y=1

Problem 19. Solve

x

8
+

5

2
= y (1)

11 +
y

3
= 3x . (2)

8×equation (1) gives: x + 20 = 8y (3)

3×equation (2) gives: 33 + y = 9x (4)

i.e. x − 8y = −20 (5)

and 9x − y = 33 (6)

8×equation (6) gives: 72x − 8y = 264 (7)

Equation (7) − equation (5) gives:

71x = 284

from which, x =
284

71
= 4

Substituting x = 4 in equation (5) gives:

4 − 8y = −20

from which, 4 + 20= 8y and y = 3

(d) Quadratic equations

Problem 20. Solve the following equations by

factorization:

(a) 3x2 − 11x − 4 = 0

(b) 4x2 + 8x + 3 = 0.

(a) The factors of 3x2 are 3x and x and these are placed

in brackets thus:

(3x )(x )

The factors of −4 are +1 and −4 or −1 and

+4, or −2 and +2. Remembering that the prod-

uct of the two inner terms added to the product

of the two outer terms must equal −11x , the only

combination to give this is +1 and −4, i.e.,

3x2 − 11x − 4= (3x + 1)(x − 4)

Thus (3x + 1)(x − 4)= 0 hence

either (3x + 1)= 0 i.e. x = −
1
3

or (x − 4)= 0 i.e. x = 4

(b) 4x2 + 8x + 3 = (2x + 3)(2x + 1)

Thus (2x + 3)(2x + 1)= 0 hence

either (2x + 3)= 0 i.e. x=−
3
2

or (2x + 1)= 0 i.e. x = −
1
2

Problem 21. The roots of a quadratic equation

are 1
3

and −2. Determine the equation in x .

If 1
3

and −2 are the roots of a quadratic equation then,

(x − 1
3 )(x + 2)= 0

i.e. x2 + 2x − 1
3 x − 2

3 = 0

i.e. x2 + 5
3 x − 2

3 = 0

or 3x2
+ 5x−2 = 0

Problem 22. Solve 4x2 + 7x + 2 = 0 giving the

answer correct to 2 decimal places.

From the quadratic formula if ax2 + bx + c = 0 then,

x =
−b ±

√
b2 − 4ac

2a

Hence if 4x2 + 7x + 2 = 0

then x =
−7 ±

√

72 − 4(4)(2)

2(4)

=
−7 ±

√
17

8

=
−7 ± 4.123

8

=
−7 + 4.123

8
or

−7 − 4.123

8

i.e. x= −0.36 or −1.39
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Now try the following exercise

Exercise 4 Further problems on

simultaneous and quadratic equations

In problems 1 to 3, solve the simultaneous equa-

tions

1. 8x − 3y = 51

3x + 4y = 14. [x = 6, y = −1]

2. 5a = 1 − 3b

2b + a + 4 = 0. [a = 2, b = −3]

3.
x

5
+

2y

3
=

49

15

3x

7
−

y

2
+

5

7
= 0. [x = 3, y = 4]

4. Solve the following quadratic equations by

factorization:

(a) x2 + 4x − 32 = 0

(b) 8x2 + 2x − 15 = 0.

[(a) 4, −8 (b) 5
4
, −3

2
]

5. Determine the quadratic equation in x whose

roots are 2 and −5.

[x2 + 3x − 10 = 0]

6. Solve the following quadratic equations, cor-

rect to 3 decimal places:

(a) 2x2 + 5x − 4 = 0

(b) 4t2 − 11t + 3 = 0.
[

(a) 0.637,−3.137

(b) 2.443,0.307

]

1.4 Polynomial division

Before looking at long division in algebra let us revise

long division with numbers (we may have forgotten,

since calculators do the job for us!)

For example,
208

16
is achieved as follows:

13
——–

16

)

208

16

48

48
—
· ·
—

(1) 16 divided into 2 won’t go

(2) 16 divided into 20 goes 1

(3) Put 1 above the zero

(4) Multiply 16 by 1 giving 16

(5) Subtract 16 from 20 giving 4

(6) Bring down the 8

(7) 16 divided into 48 goes 3 times

(8) Put the 3 above the 8

(9) 3 × 16 = 48

(10) 48 − 48 = 0

Hence
208

16
= 13 exactly

Similarly,
172

15
is laid out as follows:

11
——–

15

)

172

15

22

15
—

7
—

Hence
172

15
= 11 remainder 7 or 11 +

7

15
= 11

7

15
Below are some examples of division in algebra, which

in some respects, is similar to long division with

numbers.

(Note that a polynomial is an expression of the

form

f (x) = a + bx + cx2 + dx3 + · · ·

and polynomial division is sometimes required when

resolving into partial fractions—see Chapter 2.)
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Problem 23. Divide 2x2 + x − 3 by x − 1.

2x2 + x − 3 is called the dividend and x − 1 the divi-

sor. The usual layout is shown below with the dividend

and divisor both arranged in descending powers of the

symbols.

2x + 3
——————–

x − 1

)

2x2 + x − 3

2x2 − 2x

3x − 3

3x − 3
———

· ·
———

Dividing the first term of the dividend by the first term

of the divisor, i.e.
2x2

x
gives 2x , which is put above

the first term of the dividend as shown. The divisor

is then multiplied by 2x , i.e. 2x(x −1)= 2x2 −2x ,

which is placed under the dividend as shown. Subtract-

ing gives 3x −3. The process is then repeated, i.e. the

first term of the divisor, x , is divided into 3x , giving

+3, which is placed above the dividend as shown. Then

3(x −1)=3x −3 which is placed under the 3x −3. The

remainder, on subtraction, is zero, which completes the

process.

Thus (2x2
+x −3) ÷ (x − 1) = (2x + 3)

[A check can be made on this answer by multiplying

(2x + 3) by (x − 1) which equals 2x2 + x − 3]

Problem 24. Divide 3x3 + x2 + 3x + 5 by x + 1.

(1) (4) (7)

3x2 − 2x + 5
—————————

x + 1

)

3x3 + x2 + 3x + 5

3x3 + 3x2

−2x2 + 3x + 5

−2x2 − 2x
————–

5x + 5

5x + 5
———

· ·
———

(1) x into 3x3 goes 3x2. Put 3x2 above 3x3

(2) 3x2(x + 1) = 3x3 + 3x2

(3) Subtract

(4) x into −2x2 goes −2x . Put −2x above the

dividend

(5) −2x(x + 1) = −2x2 − 2x

(6) Subtract

(7) x into 5x goes 5. Put 5 above the dividend

(8) 5(x + 1) = 5x + 5

(9) Subtract

Thus 3x3 + x2 + 3x + 5

x + 1
= 3x2

− 2x + 5

Problem 25. Simplify
x3 + y3

x + y
.

(1) (4) (7)

x2 − x y + y2

—————————–
x + y

)

x3 + 0 + 0 + y3

x3 + x2 y

− x2 y + y3

− x2 y − x y2

———————
x y2 + y3

x y2 + y3

———–
· ·

———–

(1) x into x3 goes x2. Put x2 above x3 of dividend

(2) x2(x + y) = x3 + x2 y

(3) Subtract

(4) x into −x2 y goes −x y. Put −x y above dividend

(5) −x y(x + y) = −x2 y − x y2

(6) Subtract

(7) x into x y2 goes y2 . Put y2 above dividend

(8) y2(x + y) = x y2 + y3

(9) Subtract

Thus

x3 + y3

x + y
= x2

− xy + y2
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The zero’s shown in the dividend are not normally

shown, but are included to clarify the subtraction process

and to keep similar terms in their respective columns.

Problem 26. Divide (x2 + 3x − 2) by (x − 2).

x + 5
——————–

x − 2

)

x2 + 3x − 2

x2 − 2x

5x − 2

5x − 10
———

8
———

Hence

x2 + 3x − 2

x − 2
= x + 5 +

8

x − 2

Problem 27. Divide 4a3 − 6a2b + 5b3 by

2a − b.

2a2 − 2ab − b2

———————————
2a − b

)

4a3 − 6a2b + 5b3

4a3 − 2a2b

−4a2b + 5b3

−4a2b + 2ab2

————
−2ab2 + 5b3

−2ab2 + b3

—————–

4b3

—————–
Thus

4a3 − 6a2b + 5b3

2a − b

=2a2
− 2ab − b2

+
4b3

2a − b

Now try the following exercise

Exercise 5 Further problems on polynomial

division

1. Divide (2x2 + x y − y2) by (x + y).

[2x − y]

2. Divide (3x2 + 5x − 2) by (x + 2).

[3x − 1]

3. Determine (10x2 + 11x − 6)÷ (2x + 3).

[5x − 2]

4. Find
14x2 − 19x − 3

2x − 3
. [7x + 1]

5. Divide (x3 + 3x2 y + 3x y2 + y3) by (x + y).

[x2 + 2x y + y2]

6. Find (5x2 − x + 4)÷ (x − 1).
[

5x + 4 +
8

x − 1

]

7. Divide (3x3 + 2x2 − 5x + 4) by (x + 2).
[

3x2 − 4x + 3 −
2

x + 2

]

8. Determine (5x4 + 3x3 − 2x + 1)/(x − 3).
[

5x3 + 18x2 + 54x + 160 +
481

x − 3

]

1.5 The factor theorem

There is a simple relationship between the factors of

a quadratic expression and the roots of the equation

obtained by equating the expression to zero.

For example, consider the quadratic equation

x2 + 2x − 8 = 0.

To solve this we may factorize the quadratic expression

x2 + 2x − 8 giving (x − 2)(x + 4).

Hence (x − 2)(x + 4) = 0.

Then, if the product of two numbers is zero, one or both

of those numbers must equal zero. Therefore,

either (x − 2) = 0, from which, x = 2

or (x + 4) = 0, from which, x = −4

It is clear then that a factor of (x − 2) indicates a root

of +2, while a factor of (x + 4) indicates a root of −4.

In general, we can therefore say that:

a factor of (x − a) corresponds to a

root of x = a

In practice, we always deduce the roots of a simple

quadratic equation from the factors of the quadratic

expression, as in the above example. However, we could

reverse this process. If, by trial and error, we could deter-

mine that x = 2 is a root of the equation x2 + 2x − 8 = 0

we could deduce at once that (x − 2) is a factor of the
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expression x2 + 2x − 8. We wouldn’t normally solve

quadratic equations this way — but suppose we have

to factorize a cubic expression (i.e. one in which the

highest power of the variable is 3). A cubic equation

might have three simple linear factors and the difficulty

of discovering all these factors by trial and error would

be considerable. It is to deal with this kind of case that

we use the factor theorem. This is just a generalized

version of what we established above for the quadratic

expression. The factor theorem provides a method of

factorizing any polynomial, f (x), which has simple

factors.

A statement of the factor theorem says:

‘if x = a is a root of the equation

f (x) = 0, then (x − a) is a factor of f (x)’

The following worked problems show the use of the

factor theorem.

Problem 28. Factorize x3 − 7x − 6 and use it to

solve the cubic equation x3 − 7x − 6 = 0.

Let f (x) = x3 − 7x − 6

If x = 1, then f (1) = 13 − 7(1)− 6 = −12

If x = 2, then f (2) = 23 − 7(2)− 6 = −12

If x = 3, then f (3) = 33 − 7(3)− 6 = 0

If f (3) = 0, then (x − 3) is a factor — from the factor

theorem.

We have a choice now. We can divide x3 −7x −6 by

(x − 3) or we could continue our ‘trial and error’ by sub-

stituting further values for x in the given expression —

and hope to arrive at f (x)=0.

Let us do both ways. Firstly, dividing out gives:

x2 + 3x + 2—————————
x − 3

)

x3 − 0 − 7x − 6

x3 − 3x2

3x2 − 7x − 6

3x2 − 9x
————

2x − 6

2x − 6
———
· ·

———

Hence
x3 − 7x − 6

x − 3
= x2 + 3x + 2

i.e. x3 − 7x − 6 = (x − 3)(x2 + 3x + 2)

x2 + 3x + 2 factorizes ‘on sight’ as (x + 1)(x + 2).

Therefore

x3
− 7x − 6 = (x − 3)(x + 1)(x + 2)

A second method is to continue to substitute values of

x into f (x).

Our expression for f (3) was 33 − 7(3)− 6. We can

see that if we continue with positive values of x the

first term will predominate such that f (x) will not

be zero.

Therefore let us try some negative values for x .

Therefore f (−1) = (−1)3 − 7(−1)− 6 = 0; hence

(x + 1) is a factor (as shown above). Also

f (−2) = (−2)3 − 7(−2)− 6 = 0; hence (x + 2) is

a factor (also as shown above).

To solve x3 − 7x − 6 = 0, we substitute the fac-

tors, i.e.,

(x − 3)(x + 1)(x + 2) = 0

from which, x = 3, x = −1 and x = −2.

Note that the values of x , i.e. 3, −1 and −2, are

all factors of the constant term, i.e. the 6. This can

give us a clue as to what values of x we should

consider.

Problem 29. Solve the cubic equation

x3 −2x2 − 5x + 6=0 by using the factor theorem.

Let f (x) = x3 − 2x2 − 5x + 6 and let us substitute

simple values of x like 1, 2, 3, −1, −2, and so on.

f (1) = 13 − 2(1)2 − 5(1)+ 6 = 0,

hence (x − 1) is a factor

f (2) = 23 − 2(2)2 − 5(2)+ 6 �= 0

f (3) = 33 − 2(3)2 − 5(3)+ 6 = 0,

hence (x − 3) is a factor

f (−1) = (−1)3 − 2(−1)2 − 5(−1)+ 6 �= 0

f (−2) = (−2)3 − 2(−2)2 − 5(−2)+ 6 = 0,

hence (x + 2) is a factor

Hence x3 − 2x2 − 5x + 6 = (x − 1)(x − 3)(x + 2)

Therefore if x3 − 2x2 − 5x + 6 = 0

then (x − 1)(x − 3)(x + 2) = 0
from which, x = 1, x = 3 and x = −2

Alternatively, having obtained one factor, i.e.

(x − 1) we could divide this into (x3 − 2x2 − 5x + 6)

as follows:
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x2 − x − 6
————————–

x − 1

)

x3 − 2x2 − 5x + 6

x3 − x2

− x2 − 5x + 6

− x2 + x
————–

− 6x + 6

− 6x + 6
———–

· ·
———–

Hence x3 − 2x2 − 5x + 6

= (x − 1)(x2 − x − 6)

= (x − 1)(x − 3)(x + 2)

Summarizing, the factor theorem provides us with a

method of factorizing simple expressions, and an alter-

native, in certain circumstances, to polynomial division.

Now try the following exercise

Exercise 6 Further problems on the factor

theorem

Use the factor theorem to factorize the expressions

given in problems 1 to 4.

1. x2 + 2x − 3 [(x − 1)(x + 3)]

2. x3 + x2 − 4x − 4

[(x + 1)(x + 2)(x − 2)]

3. 2x3 + 5x2 − 4x − 7

[(x + 1)(2x2 + 3x − 7)]

4. 2x3 − x2 − 16x + 15

[(x − 1)(x + 3)(2x − 5)]

5. Use the factor theorem to factorize

x3 + 4x2 + x − 6 and hence solve the cubic

equation x3 + 4x2 + x − 6 = 0.

£

¤

¥

x3 + 4x2 + x − 6

= (x − 1)(x + 3)(x + 2)

x = 1, x = −3 and x = −2

¦

§

¨

6. Solve the equation x3 − 2x2 − x + 2 = 0.

[x = 1, x = 2 and x = −1]

1.6 The remainder theorem

Dividing a general quadratic expression

(ax2 + bx + c) by (x − p), where p is any whole

number, by long division (see section 1.3) gives:

ax + (b + ap)
————————————–

x − p

)

ax2 + bx + c

ax2 − apx

(b + ap)x + c

(b + ap)x − (b + ap)p
—————————–

c + (b + ap)p
—————————–

The remainder, c + (b + ap)p = c + bp + ap2 or

ap2 + bp + c. This is, in fact, what the remainder

theorem states, i.e.,

‘if (ax2
+ bx + c) is divided by (x − p),

the remainder will be ap2
+ bp + c’

If, in the dividend (ax2 + bx + c), we substitute p for

x we get the remainder ap2 + bp + c.

For example, when (3x2 − 4x + 5) is divided by

(x − 2) the remainder is ap2 + bp + c (where a = 3,

b = −4, c = 5 and p = 2),

i.e. the remainder is

3(2)2 + (−4)(2)+ 5 = 12 − 8 + 5 = 9

We can check this by dividing (3x2 − 4x + 5) by

(x − 2) by long division:

3x + 2
——————–

x − 2

)

3x2 − 4x + 5

3x2 − 6x

2x + 5

2x − 4
———

9
———

Similarly, when (4x2 − 7x + 9) is divided by (x +3),

the remainder is ap2 + bp + c, (where a = 4, b = −7,

c = 9 and p = −3) i.e. the remainder is

4(−3)2 + (−7)(−3)+ 9 = 36 + 21 + 9 = 66.

Also, when (x2 + 3x − 2) is divided by (x − 1), the

remainder is 1(1)2 + 3(1)− 2 = 2.

It is not particularly useful, on its own, to know

the remainder of an algebraic division. However, if the

remainder should be zero then (x − p) is a factor. This

is very useful therefore when factorizing expressions.

For example, when (2x2 + x − 3) is divided by

(x − 1), the remainder is 2(1)2 + 1(1)− 3 = 0, which

means that (x − 1) is a factor of (2x2 + x − 3).
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