HIGHER ENGINEERING MATHEMATICS

JOHN BIRD

SIXTH EDITION

Higher Engineering Mathematics

In memory of Elizabeth

Sixth Edition

John Bird, BSc (Hons), CMath, CEng, CSci, FIMA, FIET, MIEE, FIIE, FCollT

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

First edition 2010

Copyright © 2010, John Bird, Published by Elsevier Ltd. All rights reserved. The right of John Bird to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting *Obtaining permission to use Elsevier material*.

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data

A catalogue record for this book is available from the Library of Congress.

ISBN: 978-1-85-617767-2

For information on all Newnes publications visit our Web site at *www.elsevierdirect.com*

Typeset by: diacriTech, India

Printed and bound in China 10 11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID Sabre Foundation

Contents

Pr	eface		xiii
Sy	llabus g	uidance	xv
1	Algebr	a	1
	1.1	Introduction	1
	1.2	Revision of basic laws	1
	1.3	Revision of equations	3
	1.4	Polynomial division	6
	1.5	The factor theorem	8
	1.6	The remainder theorem	10
2	Partial	fractions	13
_	2.1	Introduction to partial fractions	13
	2.2	Worked problems on partial fractions with linear factors	13
	2.3	Worked problems on partial fractions with	
		repeated linear factors	16
	2.4	Worked problems on partial fractions with	
		quadratic factors	17
3	Logari	thms	20
	3.1	Introduction to logarithms	20
	3.2	Laws of logarithms	22
	3.3	Indicial equations	24
	3.4	Graphs of logarithmic functions	25
4	Expone	ential functions	27
	4.1	Introduction to exponential functions	27
	4.2	The power series for e^x	28
	4.3	Graphs of exponential functions	29
	4.4	Napierian logarithms	31
	4.5	Laws of growth and decay	34
	4.6	Reduction of exponential laws to linear form	37
ŀ	Revision	Test 1	40
5	Hyperl	polic functions	41
	5.1	Introduction to hyperbolic functions	41
	5.2	Graphs of hyperbolic functions	43
	5.3	Hyperbolic identities	45
	5.4	Solving equations involving hyperbolic functions	47
	5.5	Series expansions for $\cosh x$ and $\sinh x$	49

	Arithm	etic and geometric progressions	51
	6.1	Arithmetic progressions	51
	6.2	Worked problems on arithmetic	
		progressions	51
	6.3	Further worked problems on arithmetic	
		progressions	52
	6.4	Geometric progressions	54
	6.5	Worked problems on geometric	
		progressions	55
	6.6	Further worked problems on geometric	
		progressions	56
	The bin	iomial series	58
	7.1	Pascal's triangle	58
	7.2	The binomial series	59
	7.3	Worked problems on the binomial series	59
	7.4	Further worked problems on the binomial	
		series	62
	7.5	Practical problems involving the binomial	
		theorem	64
Revision Test 2 67			67

6

8	Maclau	rin's series	68
	8.1	Introduction	68
	8.2	Derivation of Maclaurin's theorem	68
	8.3	Conditions of Maclaurin's series	69
	8.4	Worked problems on Maclaurin's series	69
	8.5	Numerical integration using Maclaurin's series	73
	8.6	Limiting values	74
9	Solving	equations by iterative methods	77
	9.1	Introduction to iterative methods	77
	9.2	The bisection method	77
	9.3	An algebraic method of successive	
		approximations	81
	9.4	The Newton-Raphson method	84
10	Binary,	octal and hexadecimal	87
	10.1	Introduction	87
	10.2	Binary numbers	87
	10.3	Octal numbers	90
	10.4	Hexadecimal numbers	92
R	Revision	Test 3	96

vi Contents

11 Introdu	ation to trigonomotry	07
11 Introdu	Trigonometry	97
11.1	The theorem of Pythagoras	07
11.2	Trigonometric ratios of acute angles	08
11.5	Evaluating trigonometric ratios	100
11.4	Solution of right angled triangles	100
11.5	Angles of elevation and depression	105
11.0	Sine and cosine rules	100
11./	Area of any triangle	100
11.0	Worked problems on the solution of	108
11.9	triangles and finding their areas	100
11.10	Eurther worked problems on solving	109
11.10	triangles and finding their areas	110
11 11	Practical situations involving	110
11.11	trigonometry	111
11.12	Further practical situations involving	111
11.12	trigonometry	113
	uigonomeuy	110
12 Cartesi	an and polar co-ordinates	117
12.1	Introduction	117
12.2	Changing from Cartesian into polar	
	co-ordinates	117
12.3	Changing from polar into Cartesian	
	co-ordinates	119
12.4	Use of Pol/Rec functions on calculators	120
13 The cir	cle and its properties	122
13.1	Introduction	122
13.2	Properties of circles	122
13.3	Radians and degrees	123
13.4	Arc length and area of circles and sectors	124
13.5	The equation of a circle	127
13.6	Linear and angular velocity	129
13.7	Centripetal force	130
Revision	Test 4	133
14 Trigono	ometric waveforms	134
14.1	Graphs of trigonometric functions	134
14.2	Angles of any magnitude	135
14.3	The production of a sine and cosine wave	137
14.4	Sine and cosine curves	138
14.5	Sinusoidal form $A\sin(\omega t \pm \alpha)$	143
14.6	Harmonic synthesis with complex	
	waveforms	146
15 Trigono	metric identities and equations	152
15.1	Irigonometric identifies	152
15.2	Worked problems on trigonometric	150
15.0		152
15.3	Irigonometric equations	154
15.4	worked problems (1) on trigonometric	154
	equations	154

15.5	Worked problems (ii) on trigonometric equations	156
15.6	Worked problems (iii) on trigonometric	157
15.7	Worked problems (iv) on trigonometric equations	157
16 The rel	ationship between trigonometric and	
hyperb	olic functions	159
16.1	The relationship between trigonometric	
	and hyperbolic functions	159
16.2	Hyperbolic identities	160
17 Compo	und angles	163
17.1	Compound angle formulae	163
17.2	Conversion of $a\sin\omega t + b\cos\omega t$ into	
	$R\sin(\omega t + \alpha)$	165
17.3	Double angles	169
17.4	Changing products of sines and cosines	
	into sums or differences	170
17.5	Changing sums or differences of sines and	
	cosines into products	171
17.6	Power waveforms in a.c. circuits	173
Revision	Test 5	177

18	Functio	ons and their curves	178
	18.1	Standard curves	178
	18.2	Simple transformations	181
	18.3	Periodic functions	186
	18.4	Continuous and discontinuous functions	186
	18.5	Even and odd functions	186
	18.6	Inverse functions	188
	18.7	Asymptotes	190
	18.8	Brief guide to curve sketching	196
	18.9	Worked problems on curve sketching	197

19 Irregular areas, volumes and mean values of			
	wavefo	rms	203
	19.1	Areas of irregular figures	203
	19.2	Volumes of irregular solids	205
	19.3	The mean or average value of a waveform	206

Revision Test 6

20	Comple	ex numbers	213
	20.1	Cartesian complex numbers	213
	20.2	The Argand diagram	214
	20.3	Addition and subtraction of complex	
		numbers	214
	20.4	Multiplication and division of complex	
		numbers	216

	20.5	Complex equations	217
	20.6	The polar form of a complex number	218
	20.7	Multiplication and division in polar form	220
	20.8	Applications of complex numbers	221
21	De Moi	vre's theorem	225
	21.1	Introduction	225
	21.2	Powers of complex numbers	225
	21.3	Roots of complex numbers	226
	21.4	The exponential form of a complex number	228
22	The the	ory of matrices and determinants	231
	22.1	Matrix notation	231
	22.2	Addition, subtraction and multiplication	
		of matrices	231
	22.3	The unit matrix	235
	22.4	The determinant of a 2 by 2 matrix	235
	22.5	The inverse or reciprocal of a 2 by 2 matrix	236
	22.6	The determinant of a 3 by 3 matrix	237
	22.7	The inverse or reciprocal of a 3 by 3 matrix	239
23	The solu	ution of simultaneous equations by	
	matrice	s and determinants	241
	23.1	Solution of simultaneous equations by	0.41
	22.2	matrices	241
	23.2	determinants	2/3
	23.3	Solution of simultaneous equations using	243
	23.5	Cramers rule	247
	23.4	Solution of simultaneous equations using	217
	2011	the Gaussian elimination method	248
R	Revision "	Test 7	250
24	Vectors		251
	24.1	Introduction	251
	24.2	Scalars and vectors	251
	24.3	Drawing a vector	251
	24.4	Addition of vectors by drawing	252
	24.5	Resolving vectors into horizontal and	

24.5	Resolving vectors into nonzontar and	
	vertical components	254
24.6	Addition of vectors by calculation	255
24.7	Vector subtraction	260
24.8	Relative velocity	262

24.9 i, j and k notation 263

25	Methods of adding alternating waveforms		265
	25.1	Combination of two periodic functions	265
	25.2	Plotting periodic functions	265
	25.3	Determining resultant phasors by drawing	267

Contents **vii**

25.4	Determining resultant phasors by the sine	
	and cosine rules	268
25.5	Determining resultant phasors by	
	horizontal and vertical components	270
25.6	Determining resultant phasors by complex	
	numbers	272
26 Scalar	and vector products	275
26.1	The unit triad	275
26.2	The scalar product of two vectors	276
26.3	Vector products	280
26.4	Vector equation of a line	283
	-	

Revision Test 8

27	Method	ls of differentiation	287
	27.1	Introduction to calculus	287
	27.2	The gradient of a curve	287
	27.3	Differentiation from first principles	288
	27.4	Differentiation of common functions	289
	27.5	Differentiation of a product	292
	27.6	Differentiation of a quotient	293
	27.7	Function of a function	295
	27.8	Successive differentiation	296
28	Some a	pplications of differentiation	299
	28.1	Rates of change	299
	28.2	Velocity and acceleration	300
	28.3	Turning points	303
	28.4	Practical problems involving maximum	
		and minimum values	307
	28.5	Tangents and normals	311
	28.6	Small changes	312
29	Differe	ntiation of parametric equations	315
	29.1	Introduction to parametric equations	315
	29.2	Some common parametric equations	315
	29.3	Differentiation in parameters	315

29.5	Differentiation in parameters	515
29.4	Further worked problems on	
	differentiation of parametric equations	318
Differe	ntiation of implicit functions	320
30.1	Implicit functions	320

30.2	Differentiating implicit functions	320
30.3	Differentiating implicit functions	
	containing products and quotients	321
30.4	Further implicit differentiation	322

31	Logarit	hmic differentiation	325
	31.1	Introduction to logarithmic differentiation	325

- 31.2 Laws of logarithms 325
- 31.3 Differentiation of logarithmic functions 325

viii Contents

31.4	Differentiation of further logarithmic functions	326
31.5	Differentiation of $[f(x)]^x$	328
51.5	Differentiation of $[j(x)]$	520
Revision	Test 9	330
32 Differen	ntiation of hyperbolic functions	331
32.1	Standard differential coefficients of	
	hyperbolic functions	331
32.2	Further worked problems on	
	differentiation of hyperbolic functions	332
33 Differen	ntiation of inverse trigonometric and	
hyperb	olic functions	334
33.1	Differentiation of income triane anothic	334
55.2	functions	224
22.2	Logarithmic forms of the inverse	554
55.5	hyperbolic functions	330
33.4	Differentiation of inverse hyperbolic	559
55.4	functions	341
	lunctions	541
34 Partial	differentiation	345
34.1	Introduction to partial derivatives	345
34.2	First order partial derivatives	345
34.3	Second order partial derivatives	348
35 Total di	ifferential, rates of change and small	
change	S	351
35.1	Total differential	351
35.2	Rates of change	352
35.3	Small changes	354
36 Maxim	a, minima and saddle points for functions	
of two v	variables	357
36.1	Functions of two independent variables	357
36.2	Maxima, minima and saddle points	358
36.3	Procedure to determine maxima, minima	
	and saddle points for functions of two	
	variables	359
36.4	Worked problems on maxima, minima	
	and saddle points for functions of two	
	variables	359
36.5	Further worked problems on maxima,	
	minima and saddle points for functions of	
	two variables	361
Revision	Test 10	367
ite vision		201
37 Standa	rd integration	368
37.1	The process of integration	368
37.2	The general solution of integrals of the	
	form ax^n	368
37.3	Standard integrals	369
37.4	Definite integrals	372

38	Some a	pplications of integration	375
	38.1	Introduction	375
	38.2	Areas under and between curves	375
	38.3	Mean and r.m.s. values	377
	38.4	Volumes of solids of revolution	378
	38.5	Centroids	380
	38.6	Theorem of Pappus	381
	38.7	Second moments of area of regular	
		sections	383
39	Integra	tion using algebraic substitutions	392
	39.1	Introduction	392
	39.2	Algebraic substitutions	392
	39.3	Worked problems on integration using	
		algebraic substitutions	392
	39.4	Further worked problems on integration	
		using algebraic substitutions	394
	39.5	Change of limits	395

Revision Test 11

40	Integra	tion using trigonometric and hyperbolic	
	substitu	itions	398
	40.1	Introduction	398
	40.2	Worked problems on integration of $\sin^2 x$, $\cos^2 x$, $\tan^2 x$ and $\cot^2 x$	398
	40.3	Worked problems on powers of sines and cosines	400
	40.4	Worked problems on integration of products of sines and cosines	401
	40.5	Worked problems on integration using the $\sin \theta$ substitution	402
	40.6	Worked problems on integration using $\tan \theta$ substitution	404
	40.7	Worked problems on integration using the $\sinh \theta$ substitution	404
	40.8	Worked problems on integration using the $\cosh \theta$ substitution	406
41	Integra	tion using partial fractions	409
	41.1	Introduction	409
	41.2	Worked problems on integration using partial fractions with linear factors	409
	41.3	Worked problems on integration using partial fractions with repeated linear	
		factors	411
	41.4	Worked problems on integration using partial fractions with quadratic factors	412
42	The $t =$	$\tan\frac{\theta}{2}$ substitution	414
	42.1	Introduction	414
	42.2	Worked problems on the $t = \tan \frac{\theta}{2}$	41.5
		substitution	415

	42.3	Further worked problems on the $t = \tan \frac{\theta}{2}$ substitution	416
R	Revision	Test 12	419
43	Integra	tion by parts	420
	43.1	Introduction	420
	43.2	Worked problems on integration by parts	420
	43.3	Further worked problems on integration	
		by parts	422
44	Reduct	ion formulae	426
	44.1	Introduction	426
	44.2	Using reduction formulae for integrals of $\frac{1}{2}$	10.0
		the form $\int x^n e^x dx$	426
	44.3	Using reduction formulae for integrals of $\left(\int_{-\infty}^{n} \int_{-\infty}^{\infty} \int_{-\infty}^{$	407
		the form $\int x^n \cos x dx$ and $\int x^n \sin x dx$	427
	44.4	Using reduction formulae for integrals of $(1 + 1)^{n-1}$	420
	44.5	the form $\int \sin^n x dx$ and $\int \cos^n x dx$	429
	44.5	Further reduction formulae	432
15	Numor	ical integration	135
43	45.1	Introduction	435
	45.2	The trapezoidal rule	435
	45.2	The mid-ordinate rule	435
	45 A	Simpson's rule	430
	40.4	Simpson's fulc	737
R	Revision	Test 13	443

46	Solution	n of first order differential equations by	
	separat	ion of variables	444
	46.1	Family of curves	444
	46.2	Differential equations	445
	46.3	The solution of equations of the form	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$	445
	46.4	The solution of equations of the form	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = f(y)$	447
	46.5	The solution of equations of the form	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x) \cdot f(y)$	449
47	Homog	eneous first order differential equations	452
	47.1	Introduction	452
	47.2	Procedure to solve differential equations	
		of the form $P \frac{dy}{dx} = Q$	452
	47.3	Worked problems on homogeneous first	
		order differential equations	452
	47.4	Further worked problems on homogeneous	

first order differential equations

48 Linear first order differential equations 456 48.1 Introduction 456 48.2 Procedure to solve differential equations of the form $\frac{dy}{dx} + Py = Q$ 48.3 Worked problems on linear first order 457 differential equations 457 48.4 Further worked problems on linear first 458 order differential equations 49 Numerical methods for first order differential equations **461** 49.1 Introduction 461 49.2 Euler's method 461 49.3 Worked problems on Euler's method 462 49.4 An improved Euler method 466 49.5 The Runge-Kutta method 471

Revision Test 14

50

51

454

476

Second	order differential equations of the form	
$a\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} +$	$b\frac{\mathrm{d}y}{\mathrm{d}x}+cy=0$	477
50.1	Introduction	477
50.2	Procedure to solve differential equations	
	of the form $a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = 0$	478
50.3	Worked problems on differential equations	
	of the form $a \frac{d^2 y}{dx^2} + b \frac{dy}{dx} + cy = 0$	478
50.4	Further worked problems on practical	
	differential equations of the form	
	$a\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + b\frac{\mathrm{d}y}{\mathrm{d}x} + cy = 0$	480
Second	order differential equations of the form	
d^2y	, dy	402
$a \frac{dx^2}{dx^2} +$	$b\frac{dx}{dx} + cy = f(x)$	483
51.1	Complementary function and particular	
	integral	483
51.2	Procedure to solve differential equations	
51.3	of the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$ Worked problems on differential equations	483
51.5	$d^2 y = dy$	
	of the form $a\frac{y}{dx^2} + b\frac{y}{dx} + cy = f(x)$	
	where $f(x)$ is a constant or polynomial	484
51.4	Worked problems on differential equations 1^{2}	
	of the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$	
	where $f(x)$ is an exponential function	486
51.5	Worked problems on differential equations	
	of the form $a\frac{d^2y}{dt^2} + b\frac{dy}{dt^2} + cy - f(r)$	
	of the form $a \frac{dx^2}{dx^2} + b \frac{dx}{dx} + cy = f(x)$	400
	where $f(x)$ is a sine or cosine function	488

Contents **ix**

x Contents

30.4	Further worked problems on probability	33
56.3	Worked problems on probability	549
56.2	Laws of probability	54
56.1	Introduction to probability	54
56 Probab	ility	54
55.5	Zuartites, acones and percentities	5-1
55.4	Quartiles deciles and percentiles	54
55.5 55.4	Standard deviation	54. 54.
55.2	Mean median and mode for grouped data	54
55 7	Mean median and mode for discrete data	54
55 Measur	es of central tendency and dispersion	54 54
54.5	Presentation of grouped data	55
54.2	Presentation of grouped data	53
54.1	Presentation of ungrouped data	52
54 Present	ation of statistical data	52 52
Revision	Test 15	528
D · ·		500
53.8	Laplace's equation	52
53.7	The heat conduction equation	52
53.6	The wave equation	51
53.5	Separating the variables	51
0011	differential equations	51
53.4	Some important engineering partial	
55.5	by direct partial integration	51
53.2	Solution of partial differential equations	51
53.2	Partial integration	51
53 An intr 53 1	oduction to partial differential equations	51 51
	porynomials	51
52.7	Legendre's equation and Legendre	51
52.6	Bessel's equation and Bessel's functions	50
	method	50
52.5	Power series solution by the Frobenius	
	Leibniz-Maclaurin method	49
52.4	Power series solution by the	
52.3	Leibniz's theorem	49
52.2	series	49
52.2	Higher order differential coefficients as	77
52.1	Introduction	49
52 Powers	series methods of solving ordinary	10
50 D		
	where $f(x)$ is a sum or a product	49
	of the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$	
51.0	$d^2 y = dy$	
51.0	worked problems on differential equations	

57	The bin	nomial and Poisson distributions	556
	57.1	The binomial distribution	556
	57.2	The Poisson distribution	559
58	The not	rmal distribution	562
	58.1	Introduction to the normal distribution	562
	58.2	Testing for a normal distribution	566
59	Linear	correlation	570
	59.1	Introduction to linear correlation	570
	59.2	The product-moment formula for	
		determining the linear correlation	
		coefficient	570
	59.3	The significance of a coefficient of	
		correlation	571
	59.4	Worked problems on linear correlation	571
60	Linear	regression	575
	60.1	Introduction to linear regression	575
	60.2	The least-squares regression lines	575
	60.3	Worked problems on linear regression	576
R	Revision	Test 17	581
61	Introdu	action to Laplace transforms	582

61	Introdu	iction to Laplace transforms	582
	61.1	Introduction	582
	61.2	Definition of a Laplace transform	582
	61.3	Linearity property of the Laplace	
		transform	582
	61.4	Laplace transforms of elementary	
		functions	582
	61.5	Worked problems on standard Laplace	
		transforms	583
62	Propert	ties of Laplace transforms	587
	62.1	The Laplace transform of $e^{at} f(t)$	587
	62.2	Laplace transforms of the form $e^{at} f(t)$	587
	62.3	The Laplace transforms of derivatives	589
	62.4	The initial and final value theorems	591
63	Inverse	Laplace transforms	593
63	Inverse 63.1	Laplace transforms Definition of the inverse Laplace transform	593 593
63	Inverse 63.1 63.2	Laplace transforms Definition of the inverse Laplace transform Inverse Laplace transforms of simple	593 593
63	Inverse 63.1 63.2	Laplace transforms Definition of the inverse Laplace transform Inverse Laplace transforms of simple functions	593 593 593
63	Inverse 63.1 63.2 63.3	Laplace transforms Definition of the inverse Laplace transform Inverse Laplace transforms of simple functions Inverse Laplace transforms using partial	593 593 593
63	Inverse 63.1 63.2 63.3	Laplace transforms Definition of the inverse Laplace transform Inverse Laplace transforms of simple functions Inverse Laplace transforms using partial fractions	593 593 593 596
63	Inverse 63.1 63.2 63.3 63.4	Laplace transforms Definition of the inverse Laplace transform Inverse Laplace transforms of simple functions Inverse Laplace transforms using partial fractions Poles and zeros	 593 593 593 596 598
63	Inverse 63.1 63.2 63.3 63.4 The sol	Laplace transforms Definition of the inverse Laplace transform Inverse Laplace transforms of simple functions Inverse Laplace transforms using partial fractions Poles and zeros ution of differential equations using	 593 593 593 596 598
63	Inverse 63.1 63.2 63.3 63.4 The sol Laplace	Laplace transforms Definition of the inverse Laplace transform Inverse Laplace transforms of simple functions Inverse Laplace transforms using partial fractions Poles and zeros ution of differential equations using e transforms	 593 593 593 596 598 600
63	Inverse 63.1 63.2 63.3 63.4 The sol Laplace 64.1	Laplace transforms Definition of the inverse Laplace transform Inverse Laplace transforms of simple functions Inverse Laplace transforms using partial fractions Poles and zeros ution of differential equations using e transforms Introduction	 593 593 593 596 598 600 600
6364	Inverse 63.1 63.2 63.3 63.4 The sol Laplace 64.1 64.2	Laplace transforms Definition of the inverse Laplace transform Inverse Laplace transforms of simple functions Inverse Laplace transforms using partial fractions Poles and zeros ution of differential equations using e transforms Introduction Procedure to solve differential equations	 593 593 593 596 598 600 600
6364	Inverse 63.1 63.2 63.3 63.4 The sol Laplace 64.1 64.2	Laplace transforms Definition of the inverse Laplace transform Inverse Laplace transforms of simple functions Inverse Laplace transforms using partial fractions Poles and zeros ution of differential equations using e transforms Introduction Procedure to solve differential equations by using Laplace transforms	 593 593 593 596 598 600 600 600
63 64	Inverse 63.1 63.2 63.3 63.4 The sol Laplace 64.1 64.2 64.3	Laplace transforms Definition of the inverse Laplace transform Inverse Laplace transforms of simple functions Inverse Laplace transforms using partial fractions Poles and zeros ution of differential equations using transforms Introduction Procedure to solve differential equations by using Laplace transforms Worked problems on solving differential	 593 593 593 596 598 600 600 600

65	The sol	ution of simultaneous differential	
	equatio	ns using Laplace transforms	605
	65.1	Introduction	605
	65.2	Procedure to solve simultaneous differential equations using Laplace transforms	605
	65.3	Worked problems on solving simultaneous differential equations by using Laplace transforms	605
R	Revision '	Test 18	610
66	Fourier	series for periodic functions of	
	period 2	2π	611
	66.1	Introduction	611
	66.2	Periodic functions	611
	66.3	Fourier series	611
	66.4	Worked problems on Fourier series of	
		periodic functions of period 2π	612
67	Fourier	series for a non-periodic function over	
	range 2	π	617
	67.1	Expansion of non-periodic functions	617
	67.2	Worked problems on Fourier series of	
		non-periodic functions over a range of 2π	617
68	Even ar	nd odd functions and half-range	
	Fourier	series	623
	68.1	Even and odd functions	623

Contents **xi**

	68.2	Fourier cosine and Fourier sine series	623
	68.3	Half-range Fourier series	626
69	Fourier	series over any range	630
	69.1	Expansion of a periodic function of	
		period L	630
	69.2	Half-range Fourier series for functions	
		defined over range L	634
70	A nume	erical method of harmonic analysis	637
	70.1	Introduction	637
	70.2	Harmonic analysis on data given in tabular	
		or graphical form	637
	70.3	Complex waveform considerations	641
71	The con	nplex or exponential form of a	
	Fourier	r series	644
	71.1	Introduction	644
	71.2	Exponential or complex notation	644
	71.3	The complex coefficients	645
	71.4	Symmetry relationships	649
	71.5	The frequency spectrum	652
	71.6	Phasors	653
R	levision	Test 19	658
Ess	sential fo	ormulae	659
Ind	lex		675

xii Contents

Website Chapters

72 Inequa	lities	1
72.1	Introduction to inequalities	1
72.2	Simple inequalities	1
72.3	Inequalities involving a modulus	2
72.4	Inequalities involving quotients	3
72.5	Inequalities involving square functions	4
72.6	Quadratic inequalities	5
73 Boolean	n algebra and logic circuits	7
73.1	Boolean algebra and switching circuits	7
73.2	Simplifying Boolean expressions	12
73.3	Laws and rules of Boolean algebra	12
73.4	De Morgan's laws	14
73.5	Karnaugh maps	15
73.6	Logic circuits	19
73.7	Universal logic gates	23
Revision	Test 20	28
74 Sampli	ng and estimation theories	29
74.1	Introduction	29
74.2	Sampling distributions	29

74.3 74.4	The sampling distribution of the means The estimation of population parameters	29
	based on a large sample size	33
74.5	Estimating the mean of a population based	
	on a small sample size	38
75 Signific	ance testing	42
75.1	Hypotheses	42
75.2	Type I and Type II errors	42
75.3	Significance tests for population means	49
75.4	Comparing two sample means	54
76 Chi-squ	are and distribution-free tests	59
76.1	Chi-square values	59
76.2	Fitting data to theoretical distributions	60
76.3	Introduction to distribution-free tests	67
76.4	The sign test	68
76.5	Wilcoxon signed-rank test	71
76.6	The Mann-Whitney test	75
Revision	Test 21	82

Preface

This sixth edition of *'Higher Engineering Mathematics'* covers essential mathematical material suitable for students studying **Degrees**, Foundation Degrees, Higher National Certificate and Diploma courses in Engineering disciplines.

In this edition the material has been ordered into the following **twelve convenient categories**: number and algebra, geometry and trigonometry, graphs, complex numbers, matrices and determinants, vector geometry, differential calculus, integral calculus, differential equations, statistics and probability, Laplace transforms and Fourier series. **New material** has been added on logarithms and exponential functions, binary, octal and hexadecimal, vectors and methods of adding alternating waveforms. Another feature is that a **free Internet download** is available of a sample (over 1100) of the further problems contained in the book.

The primary aim of the material in this text is to provide the fundamental analytical and underpinning knowledge and techniques needed to successfully complete scientific and engineering principles modules of Degree, Foundation Degree and Higher National Engineering programmes. The material has been designed to enable students to use techniques learned for the analysis, modelling and solution of realistic engineering problems at Degree and Higher National level. It also aims to provide some of the more advanced knowledge required for those wishing to pursue careers in mechanical engineering, aeronautical engineering, electronics, communications engineering, systems engineering and all variants of control engineering.

In *Higher Engineering Mathematics 6th Edition*, theory is introduced in each chapter by a full outline of essential definitions, formulae, laws, procedures etc. The theory is kept to a minimum, for **problem solving** is extensively used to establish and exemplify the theory. It is intended that readers will gain real understanding through seeing problems solved and then through solving similar problems themselves.

Access to software packages such as Maple, Mathematica and Derive, or a graphics calculator, will enhance understanding of some of the topics in this text. Each topic considered in the text is presented in a way that assumes in the reader only knowledge attained in BTEC National Certificate/Diploma, or similar, in an Engineering discipline.

'Higher Engineering Mathematics 6th Edition' provides a follow-up to 'Engineering Mathematics 6th Edition'.

This textbook contains some **900 worked prob**lems, followed by over **1760 further problems (with answers)**, arranged within **238 Exercises**. Some **432 line diagrams** further enhance understanding.

A **sample of worked solutions** to over 1100 of the further problems has been prepared and can be **accessed free via the Internet** (see next page).

At the end of the text, a list of **Essential Formulae** is included for convenience of reference.

At intervals throughout the text are some **19 Revision Tests** (plus two more in the website chapters) to check understanding. For example, Revision Test 1 covers the material in Chapters 1 to 4, Revision Test 2 covers the material in Chapters 5 to 7, Revision Test 3 covers the material in Chapters 8 to 10, and so on. An **Instructor's Manual**, containing full solutions to the Revision Tests, is available free to lecturers adopting this text (see next page).

Due to restriction of extent, five chapters that appeared in the fifth edition have been removed from the text and placed on the website. For chapters on Inequalities, Boolean algebra and logic circuits, Sampling and estimation theories, Significance testing and Chi-square and distribution-free tests (see next page).

'Learning by example' is at the heart of 'Higher Engineering Mathematics 6th Edition'.

> JOHN BIRD Royal Naval School of Marine Engineering, HMS Sultan, formerly University of Portsmouth and Highbury College, Portsmouth

xiv Preface

Free web downloads

Extra material available on the Internet at: www.booksite.elsevier.com/newnes/bird.

It is recognised that the **level of understanding of algebra** on entry to higher courses is often inadequate. Since algebra provides the basis of so much of higher engineering studies, it is a situation that often needs urgent attention. Lack of space has prevented the inclusion of more basic algebra topics in this textbook; it is for this reason that some algebra topics – solution of simple, simultaneous and quadratic equations and transposition of formulae – have been made available to all via the Internet. Also included is a Remedial Algebra Revision Test to test understanding. To access the Algebra material visit the website.

Five extra chapters

Chapters on Inequalities, Boolean Algebra and logic circuits, Sampling and Estimation theories, Significance testing, and Chi-square and distribution-free tests are available to download at the website.

Sample of worked Solutions to Exercises

Within the text (plus the website chapters) are some 1900 further problems arranged within 260 Exercises. A sample of over 1100 worked solutions has been prepared and can be accessed free via the Internet. To access these worked solutions visit the website.

Instructor's manual

This provides fully worked solutions and mark scheme for all the Revision Tests in this book (plus 2 from the website chapters), together with solutions to the Remedial Algebra Revision Test mentioned above. The material is available to lecturers only. To obtain a password please visit the website with the following details: course title, number of students, your job title and work postal address.

To download the Instructor's Manual visit the website and enter the book title in the search box.

Syllabus Guidance

This textbook is written for **undergraduate engineering degree and foundation degree courses**; however, it is also most appropriate for **HNC/D studies** and three syllabuses are covered. The appropriate chapters for these three syllabuses are shown in the table below.

Chapter		Analytical Methods for Engineers	Further Analytical Methods for Engineers	Engineering Mathematics
1.	Algebra	×		
2.	Partial fractions	×		
3.	Logarithms	×		
4.	Exponential functions	×		
5.	Hyperbolic functions	×		
6.	Arithmetic and geometric progressions	Х		
7.	The binomial series	х		
8.	Maclaurin's series	Х		
9.	Solving equations by iterative methods		×	
10.	Binary, octal and hexadecimal		×	
11.	Introduction to trigonometry	Х		
12.	Cartesian and polar co-ordinates	Х		
13.	The circle and its properties	х		
14.	Trigonometric waveforms	х		
15.	Trigonometric identities and equations	х		
16.	The relationship between trigonometric and hyperbolic functions	×		
17.	Compound angles	х		
18.	Functions and their curves		×	
19.	Irregular areas, volumes and mean values of waveforms		×	
20.	Complex numbers		×	
21.	De Moivre's theorem		×	
22.	The theory of matrices and determinants		×	
23.	The solution of simultaneous equations by matrices and determinants		×	
24.	Vectors		×	
25.	Methods of adding alternating waveforms		×	

xvi Syllabus Guidance

Chapter		Analytical Methods for Engineers	Further Analytical Methods for Engineers	Engineering Mathematics
26.	Scalar and vector products		×	
27.	Methods of differentiation	×		
28.	Some applications of differentiation	×		
29.	Differentiation of parametric equations			
30.	Differentiation of implicit functions	×		
31.	Logarithmic differentiation	×		
32.	Differentiation of hyperbolic functions	×		
33.	Differentiation of inverse trigonometric and hyperbolic functions	×		
34.	Partial differentiation			×
35.	Total differential, rates of change and small changes			×
36.	Maxima, minima and saddle points for functions of two variables			×
37.	Standard integration	×		
38.	Some applications of integration	×		
39.	Integration using algebraic substitutions	×		
40.	Integration using trigonometric and hyperbolic substitutions	×		
41.	Integration using partial fractions	×		
42.	The $t = \tan \theta / 2$ substitution			
43.	Integration by parts	×		
44.	Reduction formulae	×		
45.	Numerical integration		×	
46.	Solution of first order differential equations by separation of variables		×	
47.	Homogeneous first order differential equations			
48.	Linear first order differential equations		×	
49.	Numerical methods for first order differential equations		×	×
50.	Second order differential equations of the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$		×	
51.	Second order differential equations of the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$		×	
52.	Power series methods of solving ordinary differential equations			×
53.	An introduction to partial differential equations			×
54.	Presentation of statistical data	×		

(Continued)

Syllabus Guidance xvii

Chapter		Analytical Methods for Engineers	Further Analytical Methods for Engineers	Engineering Mathematics
55.	Measures of central tendency and dispersion	×		
56.	Probability	×		
57.	The binomial and Poisson distributions	×		
58.	The normal distribution	×		
59.	Linear correlation	×		
60.	Linear regression	×		
61.	Introduction to Laplace transforms			×
62.	Properties of Laplace transforms			×
63.	Inverse Laplace transforms			×
64.	Solution of differential equations using Laplace transforms			×
65.	The solution of simultaneous differential equations using Laplace transforms			×
66.	Fourier series for periodic functions of period 2π			×
67.	Fourier series for non-periodic functions over range 2π			×
68.	Even and odd functions and half-range Fourier series			×
69.	Fourier series over any range			×
70.	A numerical method of harmonic analysis			×
71.	The complex or exponential form of a Fourier series			×
Webs	ite Chapters			
72.	Inequalities			
73.	Boolean algebra and logic circuits		×	
74.	Sampling and estimation theories	×		
75.	Significance testing	×		
76.	Chi-square and distribution-free tests	×		

This page intentionally left blank

Chapter 1

Algebra

1.1 Introduction

In this chapter, polynomial division and the factor and remainder theorems are explained (in Sections 1.4 to 1.6). However, before this, some essential algebra revision on basic laws and equations is included.

For further Algebra revision, go to website: http://books.elsevier.com/companions/0750681527

1.2 Revision of basic laws

(a) Basic operations and laws of indices

The laws of indices are:

(i)
$$a^m \times a^n = a^{m+n}$$
 (ii) $\frac{a^m}{a^n} = a^{m-n}$
(iii) $(a^m)^n = a^{m \times n}$ (iv) $a^{\frac{m}{n}} = \frac{n}{\sqrt{a^m}}$

(iii)
$$(a^m)^n = a^{m \times n}$$
 (iv) $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

(v)
$$a^{-n} = \frac{1}{a^n}$$
 (vi) $a^0 = 1$

Problem 1. Evaluate $4a^2bc^3-2ac$ when a=2, $b=\frac{1}{2}$ and $c=1\frac{1}{2}$

$$4a^{2}bc^{3} - 2ac = 4(2)^{2} \left(\frac{1}{2}\right) \left(\frac{3}{2}\right)^{3} - 2(2) \left(\frac{3}{2}\right)$$
$$= \frac{4 \times 2 \times 2 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 2} - \frac{12}{2}$$
$$= 27 - 6 = 21$$

Problem 2. Multiply 3x + 2y by x - y.

$$3x + 2y$$

$$x - y$$
Multiply by $x \rightarrow 3x^2 + 2xy$
Multiply by $-y \rightarrow -3xy - 2y^2$
Adding gives:
$$3x^2 - xy - 2y^2$$

Alternatively,

$$(3x + 2y)(x - y) = 3x2 - 3xy + 2xy - 2y2$$
$$= 3x2 - xy - 2y2$$

Problem 3. Simplify $\frac{a^3b^2c^4}{abc^{-2}}$ and evaluate when $a = 3, b = \frac{1}{8}$ and c = 2.

$$\frac{a^3b^2c^4}{abc^{-2}} = a^{3-1}b^{2-1}c^{4-(-2)} = a^2bc^6$$

When
$$a = 3, b = \frac{1}{8}$$
 and $c = 2$,

$$a^{2}bc^{6} = (3)^{2} \left(\frac{1}{8}\right)(2)^{6} = (9) \left(\frac{1}{8}\right)(64) = 72$$

Problem 4. Simplify $\frac{x^2y^3 + xy^2}{xy}$

$$\frac{x^2y^3 + xy^2}{xy} = \frac{x^2y^3}{xy} + \frac{xy^2}{xy}$$
$$= x^{2-1}y^{3-1} + x^{1-1}y^{2-1}$$
$$= xy^2 + y \text{ or } y(xy+1)$$

Problem 5. Simplify
$$\frac{(x^2\sqrt{y})(\sqrt{x}\sqrt[3]{y^2})}{(x^5y^3)^{\frac{1}{2}}}$$
$$\frac{(x^2\sqrt{y})(\sqrt{x}\sqrt[3]{y^2})}{(x^5y^3)^{\frac{1}{2}}} = \frac{x^2y^{\frac{1}{2}}x^{\frac{1}{2}}y^{\frac{2}{3}}}{x^{\frac{5}{2}}y^{\frac{3}{2}}}$$
$$= x^{2+\frac{1}{2}-\frac{5}{2}}y^{\frac{1}{2}+\frac{2}{3}-\frac{3}{2}}$$
$$= x^0y^{-\frac{1}{3}}$$
$$= y^{-\frac{1}{3}} \text{ or } \frac{1}{y^{\frac{1}{3}}} \text{ or } \frac{1}{\sqrt[3]{y}}$$

Now try the following exercise

Exercise 1 Revision of basic operations and laws of indices

- 1. Evaluate 2ab + 3bc abc when a = 2, b = -2 and c = 4. [-16]
- 2. Find the value of $5pq^2r^3$ when $p = \frac{2}{5}$, q = -2 and r = -1. [-8]
- 3. From 4x 3y + 2z subtract x + 2y 3z. [3x - 5y + 5z]

4. Multiply
$$2a - 5b + c$$
 by $3a + b$.
[$6a^2 - 13ab + 3ac - 5b^2 + bc$]

- 5. Simplify $(x^2y^3z)(x^3yz^2)$ and evaluate when $x = \frac{1}{2}, y = 2$ and z = 3. $[x^5y^4z^3, 13\frac{1}{2}]$
- 6. Evaluate $(a^{\frac{3}{2}}bc^{-3})(a^{\frac{1}{2}}b^{-\frac{1}{2}}c)$ when a=3, b=4 and c=2. $[\pm 4\frac{1}{2}]$

7. Simplify
$$\frac{a^2b + a^3b}{a^2b^2}$$
 $\left[\frac{1+a}{b}\right]$

8. Simplify
$$\frac{(a^3b^{\frac{1}{2}}c^{-\frac{1}{2}})(ab)^{\frac{1}{3}}}{(\sqrt{a^3}\sqrt{b}c)}$$

$$\left[a^{\frac{11}{6}}b^{\frac{1}{3}}c^{-\frac{3}{2}} \text{ or } \frac{\sqrt[6]{a^{11}\sqrt[3]{b}}}{\sqrt{c^3}}\right]$$

(b) Brackets, factorization and precedence

Problem 6. Simplify
$$a^2 - (2a - ab) - a(3b + a)$$
.

$$a^{2} - (2a - ab) - a(3b + a)$$

= $a^{2} - 2a + ab - 3ab - a^{2}$
= $-2a - 2ab$ or $-2a(1 + b)$

Problem 7. Remove the brackets and simplify the expression:

 $2a - [3{2(4a - b) - 5(a + 2b)} + 4a].$

Removing the innermost brackets gives:

$$2a - [3\{8a - 2b - 5a - 10b\} + 4a]$$

Collecting together similar terms gives:

2a - [3(3a - 12b) + 4a]

Removing the 'curly' brackets gives:

2a - [9a - 36b + 4a]

Collecting together similar terms gives:

2a - [13a - 36b]

Removing the square brackets gives:

$$2a - 13a + 36b = -11a + 36b$$
 or
 $36b - 11a$

Problem 8. Factorize (a) xy - 3xz(b) $4a^2 + 16ab^3$ (c) $3a^2b - 6ab^2 + 15ab$.

- (a) $xy 3xz = \mathbf{x}(y 3z)$
- (b) $4a^2 + 16ab^3 = 4a(a + 4b^3)$
- (c) $3a^2b 6ab^2 + 15ab = 3ab(a 2b + 5)$

Problem 9. Simplify $3c + 2c \times 4c + c \div 5c - 8c$.

The order of precedence is division, multiplication, addition and subtraction (sometimes remembered by BODMAS). Hence

 $\left[\frac{5}{y}-1\right]$

$$3c + 2c \times 4c + c \div 5c - 8c$$

= $3c + 2c \times 4c + \left(\frac{c}{5c}\right) - 8c$
= $3c + 8c^2 + \frac{1}{5} - 8c$
= $8c^2 - 5c + \frac{1}{5}$ or $c(8c - 5) + \frac{1}{5}$

Problem 10. Simplify $(2a-3) \div 4a + 5 \times 6 - 3a.$

$$(2a-3) \div 4a + 5 \times 6 - 3a$$

= $\frac{2a-3}{4a} + 5 \times 6 - 3a$
= $\frac{2a-3}{4a} + 30 - 3a$
= $\frac{2a}{4a} - \frac{3}{4a} + 30 - 3a$
= $\frac{1}{2} - \frac{3}{4a} + 30 - 3a = 30\frac{1}{2} - \frac{3}{4a} - 3a$

Now try the following exercise

Exercise 2 Further problems on brackets, factorization and precedence

- 1. Simplify 2(p+3q-r) 4(r-q+2p) + p. [-5p+10q-6r]
- 2. Expand and simplify (x + y)(x 2y). $[x^2 xy 2y^2]$
- 3. Remove the brackets and simplify:

 $24p-[2\{3(5p-q)-2(p+2q)\}+3q].$ [11q - 2p]

4. Factorize
$$21a^2b^2 - 28ab$$
. $[7ab(3ab - 4)]$

5. Factorize
$$2xy^2 + 6x^2y + 8x^3y$$
.
[$2xy(y+3x+4x^2)$]

6. Simplify
$$2y + 4 \div 6y + 3 \times 4 - 5y$$
.
$$\left[\frac{2}{3y} - 3y + 12\right]$$

7. Simplify
$$3 \div y + 2 \div y - 1$$
.

8. Simplify
$$a^2 - 3ab \times 2a \div 6b + ab$$
. [*ab*]

Revision of equations 1.3

(a) Simple equations

Problem 11. Solve
$$4 - 3x = 2x - 11$$
.

Since 4 - 3x = 2x - 11 then 4 + 11 = 2x + 3xi.e. 15 = 5x from which, $x = \frac{15}{5} = 3$

$$4(2a-3) - 2(a-4) = 3(a-3) - 1.$$

Removing the brackets gives:

$$8a - 12 - 2a + 8 = 3a - 9 - 1$$

Rearranging gives:

8a - 2a - 3a = -9 - 1 + 12 - 83a = -6i.e. $a = \frac{-6}{3} = -2$ and

Problem 13. Solve
$$\frac{3}{x-2} = \frac{4}{3x+4}$$

By 'cross-multiplying':
$$3(3x + 4) = 4(x - 2)$$

Removing brackets gives: $9x + 12 = 4x - 8$
Rearranging gives: $9x - 4x = -8 - 12$
i.e. $5x = -20$
and $x = \frac{-20}{5}$

= -4

Problem 14. Solve
$$\left(\frac{\sqrt{t}+3}{\sqrt{t}}\right) = 2.$$

$$\sqrt{t} \left(\frac{\sqrt{t}+3}{\sqrt{t}} \right) = 2\sqrt{t}$$

i.e.
$$\sqrt{t}+3 = 2\sqrt{t}$$

and

i.e.

(b) Transposition of formulae

Problem 15. Transpose the formula $v = u + \frac{ft}{m}$ to make f the subject.

 $3 = 2\sqrt{t} - \sqrt{t}$

 $3 = \sqrt{t}$

9 = t

$$u + \frac{ft}{m} = v$$
 from which, $\frac{ft}{m} = v - u$
and $m\left(\frac{ft}{m}\right) = m(v - u)$

i.e.

and

Problem 16. The impedance of an a.c. circuit is given by $Z = \sqrt{R^2 + X^2}$. Make the reactance X the subject.

f t = m(v - u)

 $f = \frac{m}{t}(v - u)$

$$\sqrt{R^2 + X^2} = Z$$
 and squaring both sides gives
 $R^2 + X^2 = Z^2$, from which,
 $X^2 = Z^2 - R^2$ and **reactance** $X = \sqrt{Z^2 - R^2}$

Problem 17. Given that $\frac{D}{d} = \sqrt{\left(\frac{f+p}{f-p}\right)}$, express p in terms of D, d and f.

Rearranging gives:

 $\sqrt{\left(\frac{f+p}{f-p}\right)} = \frac{D}{d}$ $\frac{f+p}{f-p} = \frac{D^2}{d^2}$

Squaring both sides gives:

'Cross-multiplying' gives:

$$\mathrm{d}^2(f+p) = D^2(f-p)$$

Removing brackets gives:

$$\mathrm{d}^2 f + \mathrm{d}^2 p = D^2 f - D^2 p$$

Rearranging gives: $d^2 p + D^2 p = D^2 f - d^2 f$ Factorizing gives: $p(d^2 + D^2) = f(D^2 - d^2)$ $p = \frac{f(D^2 - d^2)}{(d^2 + D^2)}$ and

Now try the following exercise

Exercise 3 Further problems on simple equations and transposition of formulae

In problems 1 to 4 solve the equations

1.
$$3x - 2 - 5x = 2x - 4$$
. $\left[\frac{1}{2}\right]$

2.
$$8+4(x-1)-5(x-3)=2(5-2x)$$
.
[-3]

3.
$$\frac{1}{3a-2} + \frac{1}{5a+3} = 0.$$
 $\left[-\frac{1}{8}\right]$

4.
$$\frac{3\sqrt{t}}{1-\sqrt{t}} = -6.$$
 [4]

5. Transpose
$$y = \frac{3(F-f)}{L}$$
 for f .

$$\int f = \frac{3F - yL}{L} \quad \text{or } f = E$$

$$\begin{bmatrix} J = \frac{1}{3} & \text{or } J = F - \frac{1}{3} \end{bmatrix}$$

vL

6. Make *l* the subject of
$$t = 2\pi \sqrt{\frac{1}{g}}$$
.

$$\int l = \frac{t^2 g}{t^2 g}$$

7. Transpose
$$m = \frac{\mu L}{L + rCR}$$
 for L.
$$\left[L = \frac{mrCR}{\mu - m}\right]$$

8. Make *r* the subject of the formula
$$\frac{x}{y} = \frac{1+r^2}{1-r^2}. \qquad \left[r = \sqrt{\left(\frac{x-y}{x+y}\right)}\right]$$

(c) Simultaneous equations

Problem 18. Solve the simultaneous equations:

$$7x - 2y = 26$$
 (1)
 $6x + 5y = 29.$ (2)

$$5 \times \text{equation} (1) \text{ gives:}$$

$$35x - 10y = 130$$
 (3)

 $x = \frac{188}{47} = 4$

 $2 \times$ equation (2) gives:

$$12x + 10y = 58 \tag{4}$$

equation (3) + equation (4) gives:

$$47x + 0 = 188$$

from which,

Substituting x = 4 in equation (1) gives:

28 - 2y = 26

from which, 28 - 26 = 2y and y = 1

Problem 19.	Solve	
$\frac{x}{8} + \frac{5}{2} =$	= y	(1)

$$11 + \frac{y}{3} = 3x.$$
 (2)

 $8 \times equation (1)$ gives: x + 20 = 8y(3)

 $3 \times$ equation (2) gives: 33 + y = 9x(4)

i.e.
$$x - 8y = -20$$
 (5)

9x - y = 33and (6) (7)

 $8 \times$ equation (6) gives: 72x - 8y = 264

Equation (7) – equation (5) gives:

	71x = 284
from which,	$x = \frac{284}{71} = 4$

Substituting x = 4 in equation (5) gives:

$$4 - 8y = -20$$

from which,

4 + 20 = 8v and v = 3

(d) Quadratic equations

Problem 20. Solve the following equations by factorization: (a) $3x^2 - 11x - 4 = 0$ (b) $4x^2 + 8x + 3 = 0$.

(a) The factors of $3x^2$ are 3x and x and these are placed in brackets thus:

(3x))(*x*) The factors of -4 are +1 and -4 or -1 and +4, or -2 and +2. Remembering that the product of the two inner terms added to the product of the two outer terms must equal -11x, the only combination to give this is +1 and -4, i.e.,

 $3x^2 - 11x - 4 = (3x + 1)(x - 4)$

(3x+1) = 0 i.e. $x = -\frac{1}{3}$

Thus (3x + 1)(x - 4) = 0 hence

or

or

(x-4) = 0 i.e. x = 4

(b)
$$4x^2 + 8x + 3 = (2x + 3)(2x + 1)$$

Thus (2x+3)(2x+1) = 0 hence

either

(2x+3) = 0 i.e. $x = -\frac{3}{2}$ (2x+1) = 0 i.e. $x = -\frac{1}{2}$

Problem 21. The roots of a quadratic equation are $\frac{1}{3}$ and -2. Determine the equation in x.

If $\frac{1}{3}$ and -2 are the roots of a quadratic equation then, $(x-\frac{1}{3})(x+2)=0$ i.e. $x^2 + 2x - \frac{1}{2}x - \frac{2}{3} = 0$ $x^2 + \frac{5}{3}x - \frac{2}{3} = 0$ i.e. $3x^2 + 5x - 2 = 0$ or

Problem 22. Solve $4x^2 + 7x + 2 = 0$ giving the answer correct to 2 decimal places.

From the quadratic formula if $ax^2 + bx + c = 0$ then,

$$c = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Hence if $4x^2 + 7x + 2 = 0$

then
$$x = \frac{-7 \pm \sqrt{7^2 - 4(4)(2)}}{2(4)}$$

= $\frac{-7 \pm \sqrt{17}}{8}$
= $\frac{-7 \pm 4.123}{8}$
= $\frac{-7 \pm 4.123}{8}$ or $\frac{-7 - 4.123}{8}$
i.e. $x = -0.36$ or -1.39

Now try the following exercise

Exercise 4 Further problems on simultaneous and quadratic equations

In problems 1 to 3, solve the simultaneous equations

- 1. 8x 3y = 513x + 4y = 14. [x = 6, y = -1]
- 2. 5a = 1 3b2b + a + 4 = 0. [a = 2, b = -3]
- 3. $\frac{x}{5} + \frac{2y}{3} = \frac{49}{15}$ $\frac{3x}{7} - \frac{y}{2} + \frac{5}{7} = 0.$ [x = 3, y = 4]
- 4. Solve the following quadratic equations by factorization:
 - (a) $x^2 + 4x 32 = 0$

(b) $8x^2 + 2x - 15 = 0$.

 $[(a) 4, -8 (b) \frac{5}{4}, -\frac{3}{2}]$

5. Determine the quadratic equation in x whose roots are 2 and -5.

$$[x^2 + 3x - 10 = 0]$$

6. Solve the following quadratic equations, correct to 3 decimal places:

(a)
$$2x^2 + 5x - 4 = 0$$

(b)
$$4t^2 - 11t + 3 = 0.$$

(a) $0.637, -3.137$
(b) $2.443, 0.307$

1.4 Polynomial division

Before looking at long division in algebra let us revise long division with numbers (we may have forgotten, since calculators do the job for us!)

For example,
$$\frac{208}{16}$$
 is achieved as follows:

$$13 \\ 16) 208 \\ 16 \\ 48 \\ 48 \\ 48 \\ \cdots$$

- (1) 16 divided into 2 won't go
- (2) 16 divided into 20 goes 1
- (3) Put 1 above the zero
- (4) Multiply 16 by 1 giving 16
- (5) Subtract 16 from 20 giving 4
- (6) Bring down the 8
- (7) 16 divided into 48 goes 3 times
- (8) Put the 3 above the 8
- (9) $3 \times 16 = 48$
- (10) 48 48 = 0

Hence
$$\frac{208}{16} = 13$$
 exactly

Similarly,
$$\frac{172}{15}$$
 is laid out as follows:

$$\begin{array}{r}
11\\
15 \overline{\smash{\big)}} 172\\
\underline{15}\\
22\\
\underline{15}\\
7\end{array}$$

Hence $\frac{172}{15} = 11$ remainder 7 or $11 + \frac{7}{15} = 11\frac{7}{15}$ Below are some examples of division in algebra, which in some respects, is similar to long division with numbers.

(Note that a **polynomial** is an expression of the form

$$f(x) = a + bx + cx^2 + dx^3 + \cdots$$

and **polynomial division** is sometimes required when resolving into partial fractions—see Chapter 2.)

Problem 23. Divide
$$2x^2 + x - 3$$
 by $x - 1$.

 $2x^2 + x - 3$ is called the **dividend** and x - 1 the **divisor**. The usual layout is shown below with the dividend and divisor both arranged in descending powers of the symbols.

$$\begin{array}{r} 2x+3 \\ x-1 \overline{\smash{\big)}\ 2x^2 + x - 3} \\ \underline{2x^2 - 2x} \\ 3x-3 \\ \underline{3x-3} \\ \overline{3x-3} \end{array}$$

Dividing the first term of the dividend by the first term of the divisor, i.e. $\frac{2x^2}{x}$ gives 2x, which is put above the first term of the dividend as shown. The divisor is then multiplied by 2x, i.e. $2x(x-1) = 2x^2 - 2x$, which is placed under the dividend as shown. Subtracting gives 3x - 3. The process is then repeated, i.e. the first term of the divisor, x, is divided into 3x, giving +3, which is placed above the dividend as shown. Then 3(x-1)=3x-3 which is placed under the 3x-3. The remainder, on subtraction, is zero, which completes the process.

Thus
$$(2x^2 + x - 3) \div (x - 1) = (2x + 3)$$

[A check can be made on this answer by multiplying (2x + 3) by (x - 1) which equals $2x^2 + x - 3$]

Problem 24. Divide
$$3x^3 + x^2 + 3x + 5$$
 by $x + 1$.

$$(1) (4) (7)
3x^2 - 2x + 5
(3x^3 + x^2 + 3x + 5)
3x^3 + 3x^2
-2x^2 + 3x + 5
-2x^2 - 2x
5x + 5
5x + 5
. . .$$

(1) $x \text{ into } 3x^3 \text{ goes } 3x^2$. Put $3x^2$ above $3x^3$

(2)
$$3x^2(x+1) = 3x^3 + 3x^2$$

- (3) Subtract
- (4) x into $-2x^2$ goes -2x. Put -2x above the dividend
- (5) $-2x(x+1) = -2x^2 2x$
- (6) Subtract
- (7) x into 5x goes 5. Put 5 above the dividend
- (8) 5(x+1) = 5x + 5
- (9) Subtract

P

Thus
$$\frac{3x^3 + x^2 + 3x + 5}{x+1} = 3x^2 - 2x + 5$$

roblem 25. Simplify
$$\frac{x^3 + y^3}{x + y}$$
.
(1) (4) (7)
 $x + y$) $x^3 + 0 + 0 + y^3$
 $x^3 + x^2 y$
 $-x^2 y + y^3$
 $-x^2 y - xy^2$
 $xy^2 + y^3$
 $xy^2 + y^3$
 $xy^2 + y^3$

(1) $x \text{ into } x^3 \text{ goes } x^2$. Put x^2 above x^3 of dividend

(2)
$$x^2(x+y) = x^3 + x^2y$$

- (3) Subtract
- (4) x into $-x^2y$ goes -xy. Put -xy above dividend

(5)
$$-xy(x+y) = -x^2y - xy^2$$

- (6) Subtract
- (7) x into xy^2 goes y^2 . Put y^2 above dividend
- (8) $y^2(x+y) = xy^2 + y^3$
- (9) Subtract

Thus

$$\frac{x^3 + y^3}{x + y} = x^2 - xy + y^2$$

The zero's shown in the dividend are not normally shown, but are included to clarify the subtraction process and to keep similar terms in their respective columns.

Problem 26. Divide
$$(x^2 + 3x - 2)$$
 by $(x - 2)$.

$$\begin{array}{r} x + 5 \\ x - 2 \overline{\smash{\big)} \begin{array}{c} x^2 + 3x - 2 \\ x^2 - 2x \\ \hline 5x - 2 \\ 5x - 10 \\ \hline 8 \end{array}} \end{array}$$

Hence

$$\frac{x^2 + 3x - 2}{x - 2} = x + 5 + \frac{8}{x - 2}$$

Problem 27. Divide $4a^3 - 6a^2b + 5b^3$ by 2a - b.

$$2a-b \overline{\smash{\big)}\begin{array}{c} 2a^2 - 2ab - b^2 \\ 4a^3 - 6a^2b + 5b^3 \\ \underline{4a^3 - 2a^2b} \\ -4a^2b + 5b^3 \\ -4a^2b + 2ab^2 \\ \underline{-4a^2b + 2ab^2} \\ \underline{-2ab^2 + 5b^3} \\ \underline{-2ab^2 + b^3} \\ \underline{4b^3} \end{array}}$$

Thus

$$\frac{4a^3 - 6a^2b + 5b^3}{2a - b} = 2a^2 - 2ab - b^2 + \frac{4b^3}{2a - b}$$

Now try the following exercise

Exercise 5 **Further problems on polynomial** division

1. Divide
$$(2x^2 + xy - y^2)$$
 by $(x + y)$.
[2x - y]

2. Divide
$$(3x^2 + 5x - 2)$$
 by $(x + 2)$.
[3x - 1]

- 3. Determine $(10x^2 + 11x 6) \div (2x + 3)$. [5x - 2]
- 4. Find $\frac{14x^2 19x 3}{2x 3}$. [7x+1]

5. Divide
$$(x^3 + 3x^2y + 3xy^2 + y^3)$$
 by $(x + y)$.
 $[x^2 + 2xy + y^2]$

6. Find
$$(5x^2 - x + 4) \div (x - 1)$$
.

$$5x + 4 + \frac{8}{x - 1}$$

7. Divide
$$(3x^3 + 2x^2 - 5x + 4)$$
 by $(x + 2)$.

$$\begin{bmatrix} 3x^2 - 4x + 3 - \frac{2}{3x^2 - 4x + 3} \end{bmatrix}$$

8. Determine
$$(5x^4 + 3x^3 - 2x + 1)/(x - 3)$$
.

$$5x^3 + 18x^2 + 54x + 160 + \frac{481}{x - 3}$$

1.5 The factor theorem

There is a simple relationship between the factors of a quadratic expression and the roots of the equation obtained by equating the expression to zero.

For example, consider the quadratic equation $x^2 + 2x - 8 = 0.$

To solve this we may factorize the quadratic expression
$$u^2 + 2u = 8$$
 similar $(u = 2)(u + 4)$

 $x^{2} + 2x - 8$ giving (x - 2)(x + 4). Hence (x - 2)(x + 4) = 0

Then, if the product of two numbers is zero, one or both of those numbers must equal zero. Therefore,

either
$$(x - 2) = 0$$
, from which, $x = 2$

or (x+4) = 0, from which, x = -4

It is clear then that a factor of (x - 2) indicates a root of +2, while a factor of (x + 4) indicates a root of -4. In general, we can therefore say that:

a factor of (x - a) corresponds to a root of x = a

In practice, we always deduce the roots of a simple quadratic equation from the factors of the quadratic expression, as in the above example. However, we could reverse this process. If, by trial and error, we could determine that x = 2 is a root of the equation $x^2 + 2x - 8 = 0$ we could deduce at once that (x - 2) is a factor of the expression $x^2 + 2x - 8$. We wouldn't normally solve quadratic equations this way — but suppose we have to factorize a cubic expression (i.e. one in which the highest power of the variable is 3). A cubic equation might have three simple linear factors and the difficulty of discovering all these factors by trial and error would be considerable. It is to deal with this kind of case that we use the **factor theorem**. This is just a generalized version of what we established above for the quadratic expression. The factor theorem provides a method of factorizing any polynomial, f(x), which has simple factors.

A statement of the **factor theorem** says:

'if
$$x = a$$
 is a root of the equation
 $f(x) = 0$, then $(x - a)$ is a factor of $f(x)$ '

The following worked problems show the use of the factor theorem.

Problem 28. Factorize $x^3 - 7x - 6$ and use it to solve the cubic equation $x^3 - 7x - 6 = 0$.

Let
$$f(x) = x^3 - 7x - 6$$

If $x = 1$, then $f(1) = 1^3 - 7(1) - 6 = -12$

If x = 2, then $f(2) = 2^3 - 7(2) - 6 = -12$

If x = 3, then $f(3) = 3^3 - 7(3) - 6 = 0$

If f(3) = 0, then (x - 3) is a factor — from the factor theorem.

We have a choice now. We can divide $x^3 - 7x - 6$ by (x - 3) or we could continue our 'trial and error' by substituting further values for x in the given expression — and hope to arrive at f(x) = 0.

Let us do both ways. Firstly, dividing out gives:

$$x-3)\frac{x^{2}+3x+2}{x^{3}-0} -7x - 6$$

$$x^{3}-3x^{2}$$

$$3x^{2}-7x - 6$$

$$3x^{2}-9x$$

$$2x - 6$$

$$2x - 6$$

$$2x - 6$$

Hence
$$\frac{x^3 - 7x - 6}{x - 3} = x^2 + 3x + 2$$

i.e. $x^3 - 7x - 6 = (x - 3)(x^2 + 3x + 2)$

 $x^2 + 3x + 2$ factorizes 'on sight' as (x + 1)(x + 2). Therefore

$$x^3 - 7x - 6 = (x - 3)(x + 1)(x + 2)$$

A second method is to continue to substitute values of x into f(x).

Our expression for f(3) was $3^3 - 7(3) - 6$. We can see that if we continue with positive values of x the first term will predominate such that f(x) will not be zero.

Therefore let us try some negative values for x. Therefore $f(-1) = (-1)^3 - 7(-1) - 6 = 0$; hence (x + 1) is a factor (as shown above). Also $f(-2) = (-2)^3 - 7(-2) - 6 = 0$; hence (x + 2) is a factor (also as shown above).

To solve $x^3 - 7x - 6 = 0$, we substitute the factors, i.e.,

$$(x-3)(x+1)(x+2) = 0$$

from which, x = 3, x = -1 and x = -2.

Note that the values of x, i.e. 3, -1 and -2, are all factors of the constant term, i.e. the 6. This can give us a clue as to what values of x we should consider.

Problem 29. Solve the cubic equation $x^3 - 2x^2 - 5x + 6 = 0$ by using the factor theorem.

Let $f(x) = x^3 - 2x^2 - 5x + 6$ and let us substitute simple values of x like 1, 2, 3, -1, -2, and so on.

$$f(1) = 1^3 - 2(1)^2 - 5(1) + 6 = 0,$$

hence (x - 1) is a factor

$$f(2) = 2^{3} - 2(2)^{2} - 5(2) + 6 \neq 0$$

$$f(3) = 3^{3} - 2(3)^{2} - 5(3) + 6 = 0,$$

hence (x - 3) is a factor

$$f(-1) = (-1)^3 - 2(-1)^2 - 5(-1) + 6 \neq 0$$

$$f(-2) = (-2)^3 - 2(-2)^2 - 5(-2) + 6 = 0,$$

hence (x + 2) is a factor

Hence $x^3 - 2x^2 - 5x + 6 = (x - 1)(x - 3)(x + 2)$ Therefore if $x^3 - 2x^2 - 5x + 6 = 0$ then (x - 1)(x - 3)(x + 2) = 0from which, x = 1, x = 3 and x = -2

Alternatively, having obtained one factor, i.e. (x-1) we could divide this into $(x^3 - 2x^2 - 5x + 6)$ as follows:

$$x - 1 \underbrace{) \begin{array}{c} x^2 - x - 6 \\ x^3 - 2x^2 - 5x + 6 \\ \underline{x^3 - x^2} \\ - x^2 - 5x + 6 \\ \underline{-x^2 + x} \\ - 6x + 6 \\ \underline{-6x + 6} \\$$

Summarizing, the factor theorem provides us with a method of factorizing simple expressions, and an alternative, in certain circumstances, to polynomial division.

Now try the following exercise

Exercise 6 Further problems on the factor theorem

Use the factor theorem to factorize the expressions given in problems 1 to 4.

1.
$$x^2 + 2x - 3$$
 [(x - 1)(x + 3)]

2.
$$x^3 + x^2 - 4x - 4$$

[(x+1)(x+2)(x-2)]

3.
$$2x^3 + 5x^2 - 4x - 7$$

[(x+1)(2x² + 3x - 7)

4.
$$2x^3 - x^2 - 16x + 15$$

[$(x-1)(x+3)(2x-5)$]

5. Use the factor theorem to factorize $x^3 + 4x^2 + x - 6$ and hence solve the cubic equation $x^3 + 4x^2 + x - 6 = 0$.

$$\begin{bmatrix} x^3 + 4x^2 + x - 6 \\ = (x - 1)(x + 3)(x + 2) \\ x = 1, x = -3 \text{ and } x = -2 \end{bmatrix}$$

6. Solve the equation $x^3 - 2x^2 - x + 2 = 0$. [x = 1, x = 2 and x = -1]

1.6 The remainder theorem

Dividing a general quadratic expression $(ax^2 + bx + c)$ by (x - p), where p is any whole number, by long division (see section 1.3) gives:

$$x-p \overbrace{)} \frac{ax + (b+ap)}{ax^2 + bx} + c$$

$$\frac{ax^2 - apx}{(b+ap)x + c}$$

$$\frac{(b+ap)x + c}{(b+ap)x} - (b+ap)p}{c + (b+ap)p}$$

The remainder, $c + (b + ap)p = c + bp + ap^2$ or $ap^2 + bp + c$. This is, in fact, what the **remainder** theorem states, i.e.,

if
$$(ax^2 + bx + c)$$
 is divided by $(x - p)$,
the remainder will be $ap^2 + bp + c'$

If, in the dividend $(ax^2 + bx + c)$, we substitute p for x we get the remainder $ap^2 + bp + c$.

For example, when $(3x^2 - 4x + 5)$ is divided by (x-2) the remainder is $ap^2 + bp + c$ (where a = 3, b = -4, c = 5 and p = 2), i.e. the remainder is

$$3(2)^2 + (-4)(2) + 5 = 12 - 8 + 5 = 9$$

We can check this by dividing $(3x^2 - 4x + 5)$ by (x-2) by long division:

$$\frac{3x+2}{3x^2-4x+5} \\
\frac{3x^2-6x}{2x+5} \\
\frac{2x+5}{2x-4} \\
9$$

Similarly, when $(4x^2 - 7x + 9)$ is divided by (x+3), the remainder is $ap^2 + bp + c$, (where a = 4, b = -7, c = 9 and p = -3 i.e. the remainder is

 $4(-3)^2 + (-7)(-3) + 9 = 36 + 21 + 9 = 66.$ Also, when $(x^2 + 3x - 2)$ is divided by (x - 1), the remainder is $1(1)^2 + 3(1) - 2 = 2$.

It is not particularly useful, on its own, to know the remainder of an algebraic division. However, if the remainder should be zero then (x - p) is a factor. This is very useful therefore when factorizing expressions.

For example, when $(2x^2 + x - 3)$ is divided by (x - 1), the remainder is $2(1)^2 + 1(1) - 3 = 0$, which means that (x - 1) is a factor of $(2x^2 + x - 3)$.

To'liq qismini Shu tugmani bosish orqali sotib oling!