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Preface

This book is an outgrowth of the training of the German IMO team from a time
when we had only a short training time of 14 days, including 6 half-day tests. This
has forced upon us a training of enormous compactness. “Great Ideas” were the
leading principles. A huge number of problems were selected to illustrate these
principles. Not only topics but also ideas were efficient means of classification.

For whom is this book written?

• For trainers and participants of contests of all kinds up to the highest level of
international competitions, including the IMO and the Putnam Competition.

• For the regular high school teacher, who is conducting a mathematics club
and is looking for ideas and problems for his/her club. Here, he/she will find
problems of any level from very simple ones to the most difficult problems
ever proposed at any competition.

• For high school teachers who want to pose the problem of the week, problem
of the month, and research problems of the year. This is not so easy. Many fail,
but some persevere, and after a while they succeed and generate a creative
atmosphere with continuous discussions of mathematical problems.

• For the regular high school teacher, who is just looking for ideas to enrich
his/her teaching by some interesting nonroutine problems.

• For all those who are interested in solving tough and interesting problems.

The book is organized into chapters. Each chapter starts with typical examples
illustrating the main ideas followed by many problems and their solutions. The
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vi Preface

solutions are sometimes just hints, giving away the main idea leading to the solu-
tion. In this way, it was possible to increase the number of examples and problems
to over 1300. The reader can increase the effectiveness of the book even more by
trying to solve the examples.

The problems are almost exclusively competition problems from all over the
world. Most of them are from the former USSR, some from Hungary, and some
from Western countries, especially from the German National Competition. The
competition problems are usually variations of problems from journals with prob-
lem sections. So it is not always easy to give credit to the originators of the problem.
If you see a beautiful problem, you first wonder at the creativity of the problem
proposer. Later you discover the result in an earlier source. For this reason, the
references to competitions are somewhat sporadic. Usually no source is given if I
have known the problem for more than 25 years. Anyway, most of the problems
are results that are known to experts in the respective fields.

There is a huge literature of mathematical problems. But, as a trainer, I know
that there can never be enough problems. You are always in desperate need of new
problems or old problems with new solutions. Any new problem book has some
new problems, and a big book, as this one, usually has quite a few problems that
are new to the reader.

The problems are arranged in no particular order, and especially not in increasing
order of difficulty. We do not know how to rate a problem’s difficulty. Even the IMO
jury, now consisting of 75 highly skilled problem solvers, commits grave errors
in rating the difficulty of the problems it selects. The over 400 IMO contestants
are also an unreliable guide. Too much depends on the previous training by an
ever-changing set of hundreds of trainers. A problem changes from impossible to
trivial if a related problem was solved in training.

I would like to thank Dr. Manfred Grathwohl for his help in implementing
various LaTEX versions on the workstation at the institute and on my PC at home.
When difficulties arose, he was a competent and friendly advisor.

There will be some errors in the proofs, for which I take full responsibility,
since none of my colleagues has read the manuscript before. Readers will miss
important strategies. So do I, but I have set myself a limit to the size of the book.
Especially, advanced methods are missing. Still, it is probably the most complete
training book on the market. The gravest gap is the absence of new topics like
probability and algorithmics to counter the conservative mood of the IMO jury.
One exception is Chapter 13 on games, a topic almost nonexistent in the IMO, but
very popular in Russia.

Frankfurt am Main, Germany Arthur Engel
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x Abbreviations and Notations

PMO Polish Mathematical Olympiad

RO Russian Olympiad (ARO from 1994 on)

SPMO St. Petersburg Mathematical Olympiad
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USO US Olympiad

Notations for Numerical Sets

N or Z+ the positive integers (natural numbers), i.e., {1,2,3, . . . }
N0 the nonnegative integers, {0,1,2, . . . }
Z the integers

Q the rational numbers

Q+ the positive rational numbers

Q+0 the nonnegative rational numbers

R the real numbers

R+ the positive real numbers

C the complex numbers

Zn the integers modulo n

1 . . n the integers 1, 2, . . . , n

Notations from Sets, Logic, and Geometry

⇐⇒ iff, if and only if

�⇒ implies

A ⊂ B A is a subset of B

A \ B A without B

A ∩ B the intersection of A and B

A ∪ B the union of A and B

a ∈ A the element a belongs to the set A

|AB| also AB, the distance between the points A and B

box parallelepiped, solid bounded by three pairs of parallel planes

Lituz.com

http://www.lituz.com


1
The Invariance Principle

We present our first Higher Problem-Solving Strategy. It is extremely useful in
solving certain types of difficult problems, which are easily recognizable. We will
teach it by solving problems which use this strategy. In fact, problem solving
can be learned only by solving problems. But it must be supported by strategies
provided by the trainer.

Our first strategy is the search for invariants, and it is called the Invariance Prin-
ciple. The principle is applicable to algorithms (games, transformations). Some
task is repeatedly performed. What stays the same? What remains invariant?
Here is a saying easy to remember:

If there is repetition, look for what does not change!

In algorithms there is a starting state S and a sequence of legal steps (moves,
transformations). One looks for answers to the following questions:

1. Can a given end state be reached?

2. Find all reachable end states.

3. Is there convergence to an end state?

4. Find all periods with or without tails, if any.

Since the Invariance Principle is a heuristic principle, it is best learned by ex-
perience, which we will gain by solving the key examples E1 to E10.
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2 1. The Invariance Principle

E1. Starting with a point S � (a, b) of the plane with 0 < b < a, we generate a
sequence of points (xn, yn) according to the rule

x0 � a, y0 � b, xn+1 � xn + yn

2
, yn+1 � 2xnyn

xn + yn

.

Here it is easy to find an invariant. From xn+1yn+1 � xnyn, for all n we deduce
xnyn � ab for all n. This is the invariant we are looking for. Initially, we have
y0 < x0. This relation also remains invariant. Indeed, suppose yn < xn for some
n. Then xn+1 is the midpoint of the segment with endpoints yn, xn. Moreover,
yn+1 < xn+1 since the harmonic mean is strictly less than the arithmetic mean.
Thus,

0 < xn+1 − yn+1 � xn − yn

xn + yn

· xn − yn

2
<

xn − yn

2

for all n. So we have lim xn � lim yn � x with x2 � ab or x � √ab.
Here the invariant helped us very much, but its recognition was not yet the

solution, although the completion of the solution was trivial.

E2. Suppose the positive integer n is odd. First Al writes the numbers 1, 2, . . . , 2n

on the blackboard. Then he picks any two numbers a, b, erases them, and writes,
instead, |a − b|. Prove that an odd number will remain at the end.

Solution. Suppose S is the sum of all the numbers still on the blackboard. Initially
this sum is S � 1+2+· · ·+2n � n(2n+1), an odd number. Each step reduces S

by 2 min(a, b), which is an even number. So the parity of S is an invariant. During
the whole reduction process we have S ≡ 1 mod 2. Initially the parity is odd. So,
it will also be odd at the end.

E3. A circle is divided into six sectors. Then the numbers 1, 0, 1, 0, 0, 0 are writ-
ten into the sectors (counterclockwise, say). You may increase two neighboring
numbers by 1. Is it possible to equalize all numbers by a sequence of such steps?

Solution. Suppose a1, . . . , a6 are the numbers currently on the sectors. Then I �
a1− a2+ a3− a4+ a5− a6 is an invariant. Initially I � 2. The goal I � 0 cannot
be reached.

E4. In the Parliament of Sikinia, each member has at most three enemies. Prove
that the house can be separated into two houses, so that each member has at most
one enemy in his own house.

Solution. Initially, we separate the members in any way into the two houses. Let
H be the total sum of all the enemies each member has in his own house. Now
suppose A has at least two enemies in his own house. Then he has at most one
enemy in the other house. If A switches houses, the number H will decrease. This
decrease cannot go on forever. At some time, H reaches its absolute minimum.
Then we have reached the required distribution.
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1. The Invariance Principle 3

Here we have a new idea. We construct a positive integral function which de-
creases at each step of the algorithm. So we know that our algorithm will termi-
nate. There is no strictly decreasing infinite sequence of positive integers. H is not
strictly an invariant, but decreases monotonically until it becomes constant. Here,
the monotonicity relation is the invariant.

E5. Suppose not all four integers a, b, c, d are equal. Start with (a, b, c, d) and
repeatedly replace (a, b, c, d) by (a − b, b − c, c − d, d − a). Then at least one
number of the quadruple will eventually become arbitrarily large.

Solution. Let Pn � (an, bn, cn, dn) be the quadruple after n iterations. Then we
have an+ bn+ cn+ dn � 0 for n ≥ 1. We do not see yet how to use this invariant.
But geometric interpretation is mostly helpful. A very important function for the
point Pn in 4-space is the square of its distance from the origin (0, 0, 0, 0), which
is a2

n + b2
n + c2

n + d2
n. If we could prove that it has no upper bound, we would be

finished.
We try to find a relation between Pn+1 and Pn:

a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1 � (an − bn)2 + (bn − cn)2 + (cn − dn)2 + (dn − an)2

� 2(a2
n + b2

n + c2
n + d2

n)

− 2anbn − 2bncn − 2cndn − 2dnan.

Now we can use an + bn + cn + dn � 0 or rather its square:

0 � (an+bn+cn+dn)2 � (an+cn)2+(bn+dn)2+2anbn+2andn+2bncn+2cndn.

(1)
Adding (1) and (2), for a2

n+1 + b2
n+1 + c2

n+1 + d2
n+1, we get

2(a2
n + b2

n + c2
n + d2

n)+ (an + cn)2 + (bn + dn)2 ≥ 2(a2
n + b2

n + c2
n + d2

n).

From this invariant inequality relationship we conclude that, for n ≥ 2,

a2
n + b2

n + c2
n + d2

n ≥ 2n−1(a2
1 + b2

1 + c2
1 + d2

1 ). (2)

The distance of the points Pn from the origin increases without bound, which
means that at least one component must become arbitrarily large. Can you always
have equality in (2)?

Here we learned that the distance from the origin is a very important func-
tion. Each time you have a sequence of points you should consider it.

E6. An algorithm is defined as follows:

Start: (x0, y0) with 0 < x0 < y0.

Step: xn+1 � xn + yn

2
, yn+1 � √xn+1yn.
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4 1. The Invariance Principle

Figure 1.1 and the arithmetic mean-geometric mean inequality show that

xn < yn ⇒ xn+1 < yn+1, yn+1 − xn+1 <
yn − xn

4

for all n. Find the common limit lim xn � lim yn � x � y.
Here, invariants can help. But there are no systematic methods to find invariants,

just heuristics. These are methods which often work, but not always. Two of these
heuristics tell us to look for the change in xn/yn or yn − xn when going from n to
n+ 1.

(a)
xn+1

yn+1
� xn+1√

xn+1yn

�
√

xn+1

yn

�
√

1+ xn/yn

2
. (1)

This reminds us of the half-angle relation

cos
α

2
�
√

1+ cos α

2
.

Since we always have 0 < xn/yn < 1, we may set xn/yn � cos αn. Then (1)
becomes

cos αn+1 � cos
αn

2
⇒ αn � α0

2n
⇒ 2nαn � α0,

which is equivalent to

2n arccos
xn

yn

� arccos
x0

y0
. (2)

This is an invariant!
(b) To avoid square roots, we consider y2

n − x2
n instead of yn − xn and get

y2
n+1 − x2

n+1 �
y2

n − x2
n

4
⇒ 2

√
y2

n+1 − x2
n+1 �

√
y2

n − x2
n

or

2n

√
y2

n − x2
n �

√
y2

0 − x2
0 , (3)

which is a second invariant.

� � ��
xn xn+1 yn+1 yn

Fig. 1.1

�
�
��

s

t

Fig. 1.2. arccos t � arcsin s, s � √1− t2.
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1. The Invariance Principle 5

From Fig. 1.2 and (2), (3), we get

arccos
x0

y0
� 2n arccos

xn

yn

� 2n arcsin

√
y2

n − x2
n

yn

� 2n arcsin

√
y2

0 − x2
0

2nyn

.

The right-hand side converges to
√

y2
0 − x2

0/y for n→∞. Finally, we get

x � y �
√

y2
0 − x2

0

arccos(x0/y0)
. (4)

It would be pretty hopeless to solve this problem without invariants. By the way,
this is a hard problem by any competition standard.

E7. Each of the numbers a1, . . . , an is 1 or −1, and we have

S � a1a2a3a4 + a2a3a4a5 + · · · + ana1a2a3 � 0.

Prove that 4 | n.

Solution. This is a number theoretic problem, but it can also be solved by in-
variance. If we replace any ai by −ai , then S does not change mod 4 since four
cyclically adjacent terms change their sign. Indeed, if two of these terms are pos-
itive and two negative, nothing changes. If one or three have the same sign, S

changes by ±4. Finally, if all four are of the same sign, then S changes by ±8.
Initially, we have S � 0 which implies S ≡ 0 mod 4. Now, step-by-step, we

change each negative sign into a positive sign. This does not change S mod 4. At
the end, we still have S ≡ 0 mod 4, but also S� n, i.e, 4|n.

E8. 2n ambassadors are invited to a banquet. Every ambassador has at most n−1
enemies. Prove that the ambassadors can be seated around a round table, so that
nobody sits next to an enemy.

Solution. First, we seat the ambassadors in any way. Let H be the number of
neighboring hostile couples. We must find an algorithm which reduces this number
whenever H > 0. Let (A, B) be a hostile couple with B sitting to the right of A

(Fig. 1.3). We must separate them so as to cause as little disturbance as possible.
This will be achieved if we reverse some arc BA′ getting Fig. 1.4. H will be reduced
if (A, A′) and (B, B ′) in Fig. 1.4 are friendly couples. It remains to be shown that
such a couple always exists with B ′ sitting to the right of A′. We start in A and go
around the table counterclockwise. We will encounter at least n friends of A. To
their right, there are at least n seats. They cannot all be occupied by enemies of
B since B has at most n − 1 enemies. Thus, there is a friend A′ of A with right
neighbor B ′, a friend of B.
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6 1. The Invariance Principle

Fig. 1.3. Invert arc A′B.

��

� �B ′ A′

A
B

Fig. 1.4

��

� �B ′ B

A
A′

Remark. This problem is similar to E4, but considerably harder. It is the following
theorem in graph theory: Let G be a linear graph with n vertices. Then G has a
Hamiltonian path if the sum of the degrees of any two vertices is equal to or larger
than n − 1. In our special case, we have proved that there is even a Hamiltonian
circuit.

E9. To each vertex of a pentagon, we assign an integer xi with sum s �∑ xi > 0.

If x, y, z are the numbers assigned to three successive vertices and if y < 0, then
we replace (x, y, z) by (x + y,−y, y + z). This step is repeated as long as there
is a y < 0. Decide if the algorithm always stops. (Most difficult problem of IMO
1986.)

Solution. The algorithm always stops. The key to the proof is (as in Examples 4
and 8) to find an integer-valued, nonnegative function f (x1, . . . , x5) of the vertex
labels whose value decreases when the given operation is performed. All but one
of the eleven students who solved the problem found the same function

f (x1, x2, x3, x4, x5) �
5∑

i�1

(xi − xi+2)2, x6 � x1, x7 � x2.

Suppose y � x4 < 0. Then fnew − fold � 2sx4 < 0, since s > 0. If the algorithm
does not stop, we can find an infinite decreasing sequence f0 > f1 > f2 > · · · of
nonnegative integers. Such a sequence does not exist.

Bernard Chazelle (Princeton) asked: How many steps are needed until stop? He
considered the infinite multiset S of all sums defined by s(i, j ) � xi + · · · + xj−1

with 1 ≤ i ≤ 5 and j > i. A multiset is a set which can have equal elements. In this
set, all elements but one either remain invariant or are switched with others. Only
s(4, 5) � x4 changes to −x4. Thus, exactly one negative element of S changes to
positive at each step. There are only finitely many negative elements in S, since
s > 0. The number of steps until stop is equal to the number of negative elements
of S. We see that the xi need not be integers.

Remark. It is interesting to find a formula with the computer, which, for input
a, b, c, d, e, gives the number of steps until stop. This can be done without much
effort if s � 1. For instance, the input (n, n, 1 − 4n, n, n) gives the step number
f (n) � 20n− 10.
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1. The Invariance Principle 7

E10. Shrinking squares. An empirical exploration. Start with a sequence S �
(a, b, c, d) of positive integers and find the derived sequence S1 � T (S) � (|a −
b|, |b−c|, |c−d|, |d−a|). Does the sequence S, S1, S2 � T (S1), S3 � T (S2), . . .
always end up with (0, 0, 0, 0)?

Let us collect material for solution hints:

(0, 3, 10, 13) �→ (3, 7, 3, 13) �→ (4, 4, 10, 10) �→
(0, 6, 0, 6) �→ (6, 6, 6, 6) �→ (0, 0, 0, 0),

(8, 17, 3, 107) �→ (9, 14, 104, 99) �→ (5, 90, 5, 90) �→
(85, 85, 85, 85) �→ (0, 0, 0, 0),

(91, 108, 95, 294) �→ (17, 13, 99, 203) �→ (4, 86, 104, 186) �→
(82, 18, 82, 182) �→ (64, 64, 100, 100) �→ (0, 36, 0, 36) �→
(36, 36, 36, 36) �→ (0, 0, 0, 0).

Observations:

1. Let max S be the maximal element of S. Then max Si+1 ≤ max Si , and
max Si+4 < max Si as long as max Si > 0. Verify these observations. This
gives a proof of our conjecture.

2. S and tS have the same life expectancy.

3. After four steps at most, all four terms of the sequence become even. Indeed,
it is sufficient to calculate modulo 2. Because of cyclic symmetry, we need
to test just six sequences 0001 �→ 0011 �→ 0101 �→ 1111 �→ 0000 and
1110 �→ 0011. Thus, we have proved our conjecture. After four steps at
most, each term is divisible by 2, after 8 steps at most, by 22, . . . , after 4k

steps at most, by 2k . As soon as max S < 2k , all terms must be 0.

In observation 1, we used another strategy, the Extremal Principle: Pick the
maximal element! Chapter 3 is devoted to this principle.

In observation 3, we used symmetry. You should always think of this strategy,
although we did not devote a chapter to this idea.

Generalizations:

(a) Start with four real numbers, e.g.,

√
2 π

√
3 e

π −√2 π −√3 e −√3 e −√2√
3−√2 π − e

√
3−√2 π − e

π − e −√3+√2 π − e −√3+√2 π − e −√3+√2 π − e −√3+√2
0 0 0 0.
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8 1. The Invariance Principle

Some more trials suggest that, even for all nonnegative real quadruples, we always
end up with (0, 0, 0, 0). But with t > 1 and S � (1, t, t2, t3) we have

T (S) � [t − 1, (t − 1)t, (t − 1)t2, (t − 1)(t2 + t + 1)].

If t3 � t2+ t+1, i.e., t � 1.8392867552 . . ., then the process never stops because
of the second observation. This t is unique up to a transformation f (t) � at + b.

(b) Start with S � (a0, a1, . . . , an−1), ai nonnegative integers. For n � 2, we
reach (0, 0) after 2 steps at most. For n � 3, we get, for 011, a pure cycle of length
3: 011 �→ 101 �→ 110 �→ 011. For n � 5 we get 00011 �→ 00101 �→ 01111 �→
10001 �→ 10010 �→ 10111 �→ 11000 �→ 01001 �→ 11011 �→ 01100 �→
10100 �→ 11101 �→ 00110 �→ 01010 �→ 11110 �→ 00011, which has a pure
cycle of length 15.

1. Find the periods for n � 6 (n � 7) starting with 000011 (0000011).

2. Prove that, for n � 8, the algorithm stops starting with 00000011.

3. Prove that, for n � 2r , we always reach (0, 0, . . . , 0), and, for n �� 2r , we get
(up to some exceptions) a cycle containing just two numbers: 0 and evenly
often some number a > 0. Because of observation 2, we may assume that
a � 1. Then | a − b |� a + b mod 2, and we do our calculations in GF(2),
i.e., the finite field with two elements 0 and 1.

4. Let n �� 2r and c(n) be the cycle length. Prove that c(2n) � 2c(n) (up to
some exceptions).

5. Prove that, for odd n, S � (0, 0, . . . , 1, 1) always lies on a cycle.

6. Algebraization. To the sequence (a0, . . . , an−1), we assign the polynomial
p(x) � an−1+ · · · + a0x

n−1 with coefficients from GF(2), and xn � 1. The
polynomial (1+x)p(x) belongs to T (S). Use this algebraization if you can.

7. The following table was generated by means of a computer. Guess as many
properties of c(n) as you can, and prove those you can.

n 3 5 7 9 11 13 15 17 19 21 23 25
c(n) 3 15 7 63 341 819 15 255 9709 63 2047 25575

n 27 29 31 33 35 37 39 41 43
c(n) 13797 47507 31 1023 4095 3233097 4095 41943 5461

Problems

1. Start with the positive integers 1, . . . , 4n− 1. In one move you may replace any two
integers by their difference. Prove that an even integer will be left after 4n− 2 steps.
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1. The Invariance Principle 9

2. Start with the set {3, 4, 12}. In each step you may choose two of the numbers a, b

and replace them by 0.6a − 0.8b and 0.8a + 0.6b. Can you reach the goal (a) or (b)
in finitely many steps:

(a) {4, 6, 12}, (b) {x, y, z} with |x − 4|, |y − 6|, |z− 12| each less than 1/
√

3?

3. Assume an 8×8 chessboard with the usual coloring. You may repaint all squares (a)
of a row or column (b) of a 2× 2 square. The goal is to attain just one black square.
Can you reach the goal?

4. We start with the state (a, b) where a, b are positive integers. To this initial state we
apply the following algorithm:

while a > 0, do if a < b then (a, b)← (2a, b − a) else (a, b)← (a − b, 2b).

For which starting positions does the algorithm stop? In how many steps does it stop,
if it stops? What can you tell about periods and tails?

The same questions, when a, b are positive reals.

5. Around a circle, 5 ones and 4 zeros are arranged in any order. Then between any two
equal digits, you write 0 and between different digits 1. Finally, the original digits
are wiped out. If this process is repeated indefinitely, you can never get 9 zeros.
Generalize!

6. There are a white, b black, and c red chips on a table. In one step, you may choose
two chips of different colors and replace them by a chip of the third color. If just one
chip will remain at the end, its color will not depend on the evolution of the game.
When can this final state be reached?

7. There are a white, b black, and c red chips on a table. In one step, you may choose
two chips of different colors and replace each one by a chip of the third color. Find
conditions for all chips to become of the same color. Suppose you have initially 13
white 15 black and 17 red chips. Can all chips become of the same color? What
states can be reached from these numbers?

8. There is a positive integer in each square of a rectangular table. In each move, you
may double each number in a row or subtract 1 from each number of a column. Prove
that you can reach a table of zeros by a sequence of these permitted moves.

9. Each of the numbers 1 to 106 is repeatedly replaced by its digital sum until we reach
106 one-digit numbers. Will these have more 1’s or 2’s?

10. The vertices of an n-gon are labeled by real numbers x1, . . . , xn. Let a, b, c, d be
four successive labels. If (a − d)(b − c) < 0, then we may switch b with c. Decide
if this switching operation can be performed infinitely often.

11. In Fig. 1.5, you may switch the signs of all numbers of a row, column, or a parallel
to one of the diagonals. In particular, you may switch the sign of each corner square.
Prove that at least one −1 will remain in the table.

-11
1
1
1

1
1
1

1
1
1
1

1
1
1
1

Fig. 1.5
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12. There is a row of 1000 integers. There is a second row below, which is constructed
as follows. Under each number a of the first row, there is a positive integer f (a) such
that f (a) equals the number of occurrences of a in the first row. In the same way,
we get the 3rd row from the 2nd row, and so on. Prove that, finally, one of the rows
is identical to the next row.

13. There is an integer in each square of an 8 × 8 chessboard. In one move, you may
choose any 4 × 4 or 3 × 3 square and add 1 to each integer of the chosen square.
Can you always get a table with each entry divisible by (a) 2, (b) 3?

14. We strike the first digit of the number 71996, and then add it to the remaining number.
This is repeated until a number with 10 digits remains. Prove that this number has
two equal digits.

15. There is a checker at point (1, 1) of the lattice (x, y) with x, y positive integers. It
moves as follows. At any move it may double one coordinate, or it may subtract
the smaller coordinate from the larger . Which points of the lattice can the checker
reach?

16. Each term in a sequence 1, 0, 1, 0, 1, 0, . . . starting with the seventh is the sum of the
last 6 terms mod 10. Prove that the sequence . . . , 0, 1, 0, 1, 0, 1, . . . never occurs.

17. Starting with any 35 integers, you may select 23 of them and add 1 to each. By
repeating this step, one can make all 35 integers equal. Prove this. Now replace 35
and 23 by m and n, respectively. What condition must m and n satisfy to make the
equalization still possible?

18. The integers 1, . . . , 2n are arranged in any order on 2n places numbered 1, . . . , 2n.
Now we add its place number to each integer. Prove that there are two among the
sums which have the same remainder mod 2n.

19. The n holes of a socket are arranged along a circle at equal (unit) distances and
numbered 1, . . . , n. For what n can the prongs of a plug fitting the socket be numbered
such that at least one prong in each plug-in goes into a hole of the same number (good
numbering)?

20. A game for computing gcd(a, b) and lcm(a, b).
We start with x � a, y � b, u � a, v � b and move as follows:
if x < y then, set y ← y − x and v← v + u

if x > y, then set x ← x − y and u← u+ v

The game ends with x � y � gcd(a, b) and (u+ v)/2 � lcm(a, b). Show this.

21. Three integers a, b, c are written on a blackboard. Then one of the integers is erased
and replaced by the sum of the other two diminished by 1. This operation is repeated
many times with the final result 17, 1967, 1983. Could the initial numbers be (a) 2,
2, 2 (b) 3, 3, 3?

22. There is a chip on each dot in Fig. 1.6. In one move, you may simultaneously move
any two chips by one place in opposite directions. The goal is to get all chips into
one dot. When can this goal be reached?

�
�� ��

� ��
1

2

n

3

Fig. 1.6
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23. Start with n pairwise different integers x1, x2, . . . , xn, (n > 2) and repeat the fol-
lowing step:

T : (x1, . . . , xn) �→
(

x1 + x2

2
,
x2 + x3

2
, . . . ,

xn + x1

2

)
.

Show that T , T 2, . . . finally leads to nonintegral components.

24. Start with an m × n table of integers. In one step, you may change the sign of all
numbers in any row or column. Show that you can achieve a nonnegative sum of any
row or column. (Construct an integral function which increases at each step, but is
bounded above. Then it must become constant at some step, reaching its maximum.)

25. Assume a convex 2m-gon A1, . . . , A2m. In its interior we choose a point P , which
does not lie on any diagonal. Show that P lies inside an even number of triangles
with vertices among A1, . . . , A2m.

26. Three automata I,H, T print pairs of positive integers on tickets. For input (a, b), I
and H give (a+ 1, b+ 1) and (a/2, b/2), respectively. H accepts only even a, b. T

needs two pairs (a, b) and (b, c) as input and yields output (a, c). Starting with (5, 19)
can you reach the ticket (a) (1, 50) (b) (1, 100)? Initially, we have (a, b), a < b. For
what n is (1, n) reachable?

27. Three automata I, R, S print pairs of positive integers on tickets. For entry (x, y), the
automata I, R, S give tickets (x − y, y), (x + y, y), (y, x), respectively, as outputs.
Initially, we have the ticket (1, 2). With these automata, can I get the tickets (a)
(19, 79) (b) (819, 357)? Find an invariant. What pairs (p, q) can I get starting with
(a, b)? Via which pair should I best go?

28. n numbers are written on a blackboard. In one step you may erase any two of the
numbers, say a and b, and write, instead (a+ b)/4. Repeating this step n− 1 times,
there is one number left. Prove that, initially, if there were n ones on the board, at
the end, a number, which is not less than 1/n will remain.

29. The following operation is performed with a nonconvex non-self-intersecting poly-
gon P . Let A, B be two nonneighboring vertices. Suppose P lies on the same side
of AB. Reflect one part of the polygon connecting A with B at the midpoint O of
AB. Prove that the polygon becomes convex after finitely many such reflections.

30. Solve the equation (x2 − 3x + 3)2 − 3(x2 − 3x + 3)+ 3 � x.

31. Let a1, a2, . . . , an be a permutation of 1, 2, . . . , n. If n is odd, then the product
P � (a1 − 1)(a2 − 2) . . . (an − n) is even. Prove this.

32. Many handshakes are exchanged at a big international congress. We call a person
an odd person if he has exchanged an odd number of handshakes. Otherwise he will
be called an even person. Show that, at any moment, there is an even number of odd
persons.

33. Start with two points on a line labeled 0, 1 in that order. In one move you may add
or delete two neighboring points (0, 0) or (1, 1). Your goal is to reach a single pair
of points labeled (1, 0) in that order. Can you reach this goal?

34. Is it possible to transform f (x) � x2 + 4x + 3 into g(x) � x2 + 10x + 9 by a
sequence of transformations of the form

f (x) �→ x2f (1/x + 1) or f (x) �→ (x − 1)2f [1/(x − 1)]?
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