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Preface

Pattern recognition has its origins in engineering, whereas machine learning grew
out of computer science. However, these activities can be viewed as two facets of
the same field, and together they have undergone substantial development over the
past ten years. In particular, Bayesian methods have grown from a specialist niche to
become mainstream, while graphical models have emerged as a general framework
for describing and applying probabilistic models. Also, the practical applicability of
Bayesian methods has been greatly enhanced through the development of a range of
approximate inference algorithms such as variational Bayes and expectation propa-
gation. Similarly, new models based on kernels have had significant impact on both
algorithms and applications.

This new textbook reflects these recent developments while providing a compre-
hensive introduction to the fields of pattern recognition and machine learning. It is
aimed at advanced undergraduates or first year PhD students, as well as researchers
and practitioners, and assumes no previous knowledge of pattern recognition or ma-
chine learning concepts. Knowledge of multivariate calculus and basic linear algebra
is required, and some familiarity with probabilities would be helpful though not es-
sential as the book includes a self-contained introduction to basic probability theory.

Because this book has broad scope, it is impossible to provide a complete list of
references, and in particular no attempt has been made to provide accurate historical
attribution of ideas. Instead, the aim has been to give references that offer greater
detail than is possible here and that hopefully provide entry points into what, in some
cases, is a very extensive literature. For this reason, the references are often to more
recent textbooks and review articles rather than to original sources.

The book is supported by a great deal of additional material, including lecture
slides as well as the complete set of figures used in the book, and the reader is
encouraged to visit the book web site for the latest information:

http://research.microsoft.com/∼cmbishop/PRML

vii
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viii PREFACE

Exercises
The exercises that appear at the end of every chapter form an important com-

ponent of the book. Each exercise has been carefully chosen to reinforce concepts
explained in the text or to develop and generalize them in significant ways, and each
is graded according to difficulty ranging from (�), which denotes a simple exercise
taking a few minutes to complete, through to (� � �), which denotes a significantly
more complex exercise.

It has been difficult to know to what extent these solutions should be made
widely available. Those engaged in self study will find worked solutions very ben-
eficial, whereas many course tutors request that solutions be available only via the
publisher so that the exercises may be used in class. In order to try to meet these
conflicting requirements, those exercises that help amplify key points in the text, or
that fill in important details, have solutions that are available as a PDF file from the
book web site. Such exercises are denoted by www . Solutions for the remaining
exercises are available to course tutors by contacting the publisher (contact details
are given on the book web site). Readers are strongly encouraged to work through
the exercises unaided, and to turn to the solutions only as required.

Although this book focuses on concepts and principles, in a taught course the
students should ideally have the opportunity to experiment with some of the key
algorithms using appropriate data sets. A companion volume (Bishop and Nabney,
2008) will deal with practical aspects of pattern recognition and machine learning,
and will be accompanied by Matlab software implementing most of the algorithms
discussed in this book.
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Mathematical notation

I have tried to keep the mathematical content of the book to the minimum neces-
sary to achieve a proper understanding of the field. However, this minimum level is
nonzero, and it should be emphasized that a good grasp of calculus, linear algebra,
and probability theory is essential for a clear understanding of modern pattern recog-
nition and machine learning techniques. Nevertheless, the emphasis in this book is
on conveying the underlying concepts rather than on mathematical rigour.

I have tried to use a consistent notation throughout the book, although at times
this means departing from some of the conventions used in the corresponding re-
search literature. Vectors are denoted by lower case bold Roman letters such as
x, and all vectors are assumed to be column vectors. A superscript T denotes the
transpose of a matrix or vector, so that xT will be a row vector. Uppercase bold
roman letters, such as M, denote matrices. The notation (w1, . . . , wM ) denotes a
row vector with M elements, while the corresponding column vector is written as
w = (w1, . . . , wM )T.

The notation [a, b] is used to denote the closed interval from a to b, that is the
interval including the values a and b themselves, while (a, b) denotes the correspond-
ing open interval, that is the interval excluding a and b. Similarly, [a, b) denotes an
interval that includes a but excludes b. For the most part, however, there will be
little need to dwell on such refinements as whether the end points of an interval are
included or not.

The M × M identity matrix (also known as the unit matrix) is denoted IM ,
which will be abbreviated to I where there is no ambiguity about it dimensionality.
It has elements Iij that equal 1 if i = j and 0 if i �= j.

A functional is denoted f [y] where y(x) is some function. The concept of a
functional is discussed in Appendix D.

The notation g(x) = O(f(x)) denotes that |f(x)/g(x)| is bounded as x → ∞.
For instance if g(x) = 3x2 + 2, then g(x) = O(x2).

The expectation of a function f(x, y) with respect to a random variable x is de-
noted by Ex[f(x, y)]. In situations where there is no ambiguity as to which variable
is being averaged over, this will be simplified by omitting the suffix, for instance

xi
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xii MATHEMATICAL NOTATION

E[x]. If the distribution of x is conditioned on another variable z, then the corre-
sponding conditional expectation will be written Ex[f(x)|z]. Similarly, the variance
is denoted var[f(x)], and for vector variables the covariance is written cov[x,y]. We
shall also use cov[x] as a shorthand notation for cov[x,x]. The concepts of expecta-
tions and covariances are introduced in Section 1.2.2.

If we have N values x1, . . . ,xN of a D-dimensional vector x = (x1, . . . , xD)T,
we can combine the observations into a data matrix X in which the nth row of X
corresponds to the row vector xT

n . Thus the n, i element of X corresponds to the
ith element of the nth observation xn. For the case of one-dimensional variables we
shall denote such a matrix by x, which is a column vector whose nth element is xn.
Note that x (which has dimensionality N ) uses a different typeface to distinguish it
from x (which has dimensionality D).
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1
Introduction

The problem of searching for patterns in data is a fundamental one and has a long and
successful history. For instance, the extensive astronomical observations of Tycho
Brahe in the 16th century allowed Johannes Kepler to discover the empirical laws of
planetary motion, which in turn provided a springboard for the development of clas-
sical mechanics. Similarly, the discovery of regularities in atomic spectra played a
key role in the development and verification of quantum physics in the early twenti-
eth century. The field of pattern recognition is concerned with the automatic discov-
ery of regularities in data through the use of computer algorithms and with the use of
these regularities to take actions such as classifying the data into different categories.

Consider the example of recognizing handwritten digits, illustrated in Figure 1.1.
Each digit corresponds to a 28×28 pixel image and so can be represented by a vector
x comprising 784 real numbers. The goal is to build a machine that will take such a
vector x as input and that will produce the identity of the digit 0, . . . , 9 as the output.
This is a nontrivial problem due to the wide variability of handwriting. It could be

1
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2 1. INTRODUCTION

Figure 1.1 Examples of hand-written dig-
its taken from US zip codes.

tackled using handcrafted rules or heuristics for distinguishing the digits based on
the shapes of the strokes, but in practice such an approach leads to a proliferation of
rules and of exceptions to the rules and so on, and invariably gives poor results.

Far better results can be obtained by adopting a machine learning approach in
which a large set of N digits {x1, . . . ,xN} called a training set is used to tune the
parameters of an adaptive model. The categories of the digits in the training set
are known in advance, typically by inspecting them individually and hand-labelling
them. We can express the category of a digit using target vector t, which represents
the identity of the corresponding digit. Suitable techniques for representing cate-
gories in terms of vectors will be discussed later. Note that there is one such target
vector t for each digit image x.

The result of running the machine learning algorithm can be expressed as a
function y(x) which takes a new digit image x as input and that generates an output
vector y, encoded in the same way as the target vectors. The precise form of the
function y(x) is determined during the training phase, also known as the learning
phase, on the basis of the training data. Once the model is trained it can then de-
termine the identity of new digit images, which are said to comprise a test set. The
ability to categorize correctly new examples that differ from those used for train-
ing is known as generalization. In practical applications, the variability of the input
vectors will be such that the training data can comprise only a tiny fraction of all
possible input vectors, and so generalization is a central goal in pattern recognition.

For most practical applications, the original input variables are typically prepro-
cessed to transform them into some new space of variables where, it is hoped, the
pattern recognition problem will be easier to solve. For instance, in the digit recogni-
tion problem, the images of the digits are typically translated and scaled so that each
digit is contained within a box of a fixed size. This greatly reduces the variability
within each digit class, because the location and scale of all the digits are now the
same, which makes it much easier for a subsequent pattern recognition algorithm
to distinguish between the different classes. This pre-processing stage is sometimes
also called feature extraction. Note that new test data must be pre-processed using
the same steps as the training data.

Pre-processing might also be performed in order to speed up computation. For
example, if the goal is real-time face detection in a high-resolution video stream,
the computer must handle huge numbers of pixels per second, and presenting these
directly to a complex pattern recognition algorithm may be computationally infeasi-
ble. Instead, the aim is to find useful features that are fast to compute, and yet that
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1. INTRODUCTION 3

also preserve useful discriminatory information enabling faces to be distinguished
from non-faces. These features are then used as the inputs to the pattern recognition
algorithm. For instance, the average value of the image intensity over a rectangular
subregion can be evaluated extremely efficiently (Viola and Jones, 2004), and a set of
such features can prove very effective in fast face detection. Because the number of
such features is smaller than the number of pixels, this kind of pre-processing repre-
sents a form of dimensionality reduction. Care must be taken during pre-processing
because often information is discarded, and if this information is important to the
solution of the problem then the overall accuracy of the system can suffer.

Applications in which the training data comprises examples of the input vectors
along with their corresponding target vectors are known as supervised learning prob-
lems. Cases such as the digit recognition example, in which the aim is to assign each
input vector to one of a finite number of discrete categories, are called classification
problems. If the desired output consists of one or more continuous variables, then
the task is called regression. An example of a regression problem would be the pre-
diction of the yield in a chemical manufacturing process in which the inputs consist
of the concentrations of reactants, the temperature, and the pressure.

In other pattern recognition problems, the training data consists of a set of input
vectors x without any corresponding target values. The goal in such unsupervised
learning problems may be to discover groups of similar examples within the data,
where it is called clustering, or to determine the distribution of data within the input
space, known as density estimation, or to project the data from a high-dimensional
space down to two or three dimensions for the purpose of visualization.

Finally, the technique of reinforcement learning (Sutton and Barto, 1998) is con-
cerned with the problem of finding suitable actions to take in a given situation in
order to maximize a reward. Here the learning algorithm is not given examples of
optimal outputs, in contrast to supervised learning, but must instead discover them
by a process of trial and error. Typically there is a sequence of states and actions in
which the learning algorithm is interacting with its environment. In many cases, the
current action not only affects the immediate reward but also has an impact on the re-
ward at all subsequent time steps. For example, by using appropriate reinforcement
learning techniques a neural network can learn to play the game of backgammon to a
high standard (Tesauro, 1994). Here the network must learn to take a board position
as input, along with the result of a dice throw, and produce a strong move as the
output. This is done by having the network play against a copy of itself for perhaps a
million games. A major challenge is that a game of backgammon can involve dozens
of moves, and yet it is only at the end of the game that the reward, in the form of
victory, is achieved. The reward must then be attributed appropriately to all of the
moves that led to it, even though some moves will have been good ones and others
less so. This is an example of a credit assignment problem. A general feature of re-
inforcement learning is the trade-off between exploration, in which the system tries
out new kinds of actions to see how effective they are, and exploitation, in which
the system makes use of actions that are known to yield a high reward. Too strong
a focus on either exploration or exploitation will yield poor results. Reinforcement
learning continues to be an active area of machine learning research. However, a
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4 1. INTRODUCTION

Figure 1.2 Plot of a training data set of N =
10 points, shown as blue circles,
each comprising an observation
of the input variable x along with
the corresponding target variable
t. The green curve shows the
function sin(2πx) used to gener-
ate the data. Our goal is to pre-
dict the value of t for some new
value of x, without knowledge of
the green curve.

x

t

0 1

−1

0

1

detailed treatment lies beyond the scope of this book.
Although each of these tasks needs its own tools and techniques, many of the

key ideas that underpin them are common to all such problems. One of the main
goals of this chapter is to introduce, in a relatively informal way, several of the most
important of these concepts and to illustrate them using simple examples. Later in
the book we shall see these same ideas re-emerge in the context of more sophisti-
cated models that are applicable to real-world pattern recognition applications. This
chapter also provides a self-contained introduction to three important tools that will
be used throughout the book, namely probability theory, decision theory, and infor-
mation theory. Although these might sound like daunting topics, they are in fact
straightforward, and a clear understanding of them is essential if machine learning
techniques are to be used to best effect in practical applications.

1.1. Example: Polynomial Curve Fitting

We begin by introducing a simple regression problem, which we shall use as a run-
ning example throughout this chapter to motivate a number of key concepts. Sup-
pose we observe a real-valued input variable x and we wish to use this observation to
predict the value of a real-valued target variable t. For the present purposes, it is in-
structive to consider an artificial example using synthetically generated data because
we then know the precise process that generated the data for comparison against any
learned model. The data for this example is generated from the function sin(2πx)
with random noise included in the target values, as described in detail in Appendix A.

Now suppose that we are given a training set comprising N observations of x,
written x ≡ (x1, . . . , xN )T, together with corresponding observations of the values
of t, denoted t ≡ (t1, . . . , tN )T. Figure 1.2 shows a plot of a training set comprising
N = 10 data points. The input data set x in Figure 1.2 was generated by choos-
ing values of xn, for n = 1, . . . , N , spaced uniformly in range [0, 1], and the target
data set t was obtained by first computing the corresponding values of the function
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