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Introduction

Building elegant and highly responsible, responsive, and stable Java client applications (fat clients)
is a highly acceptable approach if security considerations or network availability speaks against
web applications, or maintaining servers and server applications lies out of scope for your project.
Additionally, using Kotlin as a programming language boosts code expressiveness and maintainability,
allowing for a development yielding a clean code approach.

The book introduces JavaFX as a frontend technology and from the very beginning focuses
on using Kotlin instead of Java for coding the program artifacts. Many listings and code snippets
accompany the text, readily allowing for a hands-on learning style.

The Book’s Targeted Audience

The book is for low- to mid-level Java or Kotlin developers with or without JavaFX experience,
wishing to learn how to build JavaFX applications with Kotlin.

The readers will in the end be able to use Kotlin as a language for building basic to moderately
advanced and elaborated apps targeting JavaFX.

Any experience in using JavaFX and frontend coding is not a requirement for reading the book.
Being a Kotlin expert is not necessary either, but having read introductory-level books or studied
online resources is surely helpful. The online documentation of Kotlin and JavaFX also provides
valuable resources you can use as a reference while reading this book.

Source Code

All source code shown or referred to in this book can be found at github.com/apress/frontend-
development-javafx-kotlin.

How to Read This Book

This book should be read sequentially to get the most benefit from it. Of course, you can skip one
or the other chapter if you already gained knowledge elsewhere. Taking its introductory nature, the
book is not meant to present a reference fully covering each and every aspect of Kotlin frontend
programming or JavaFX, so also consulting the online documentation at

https://openjfx.io/

https://openjfx.io/javadoc/19/

https://kotlinlang.org/docs/home.html

xiii


https://github.com/apress/frontend-development-javafx-kotlin
https://openjfx.io/
https://openjfx.io/
https://openjfx.io/
https://openjfx.io/javadoc/19/
https://openjfx.io/javadoc/19/
https://openjfx.io/javadoc/19/
https://openjfx.io/javadoc/19/
https://openjfx.io/javadoc/19/
https://kotlinlang.org/docs/home.html
https://kotlinlang.org/docs/home.html
https://kotlinlang.org/docs/home.html
https://kotlinlang.org/docs/home.html
https://kotlinlang.org/docs/home.html
https://kotlinlang.org/docs/home.html
https://lituz.com/shop/

Lituz. con

Xiv Introduction

while you are reading the book certainly is not a bad idea.

The book is split up into nine chapters. Chapter 1 gives a general introduction and presents hello
world-style programs for Gradle, Eclipse, and IntelliJ.

Chapter 2 talks about using properties as data holders and addresses one- and two-way binding
techniques for connecting controls and data in your program.

Chapter 3 introduces stages and scenes, which serve as primordial containers for visual artifacts.

Chapter 4 talks about containers and ways to lay out and style your scenes.

Chapter 5 handles nodes and controls including styling. These aspects usually constitute the biggest
part of your project work speaking of time budget.

Chapter 6 presents lists and tables, which are particularly important for enterprise-level projects.

Chapter 7 is for summarizing and deepening our knowledge about event handling in JavaFX. This
also includes drag and drop procedures.

Chapter 8 introduces effects and animation, improving user experience and giving your programs
some eye candies.

As a prospect, Chapter 9 briefly introduces concurrency techniques, giving you a starting point for
handling background processing needs.
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In this chapter, we give a brief introduction to using JavaFX and Kotlin together, and we create “Hello
World”—style projects for the command line, for Eclipse, and for IntelliJ IDEA.

Introduction

JavaFX is the dedicated fat client (desktop application) GUI toolkit for current Java releases. It is
the replacement and successor of the venerable Java Swing technology. This switch happened around
2010, and since then JavaFX has been constantly improved and extended. With JREs up to version
JDK 9, JavaFX was part of the Java distribution—with JDK 11 and later, it has to be installed
separately.

The following features describe JavaFX:

¢ Built-in controls: Labels, editable text fields, buttons, combo boxes, checkboxes, radio buttons,
menu bars, scrollbars, accordion, tabs, canvas (for drawing shapes and figures), color picker, pag-
ination, 3D graphics (games, science, product presentation), WebView (presenting and interacting
with web contents), dialogs, sliders, spinners, progress bars

e Lists, tables, trees

e Built-in layouts: AnchorPane (anchoring nodes to one of the edges or to the center point),
BorderPane (placing nodes at bottom, top, right, left, center), FlowPane (placing nodes consec-
utively and wrapping at the boundaries), TilePane (same as FlowPane, but with all cells the same
size), GridPane (placing nodes in a grid with cell sizes dynamically calculated and on demand
spanning several rows and columns), VBox (placing nodes in columns), HBox (placing nodes in
rows), StackPane (placing nodes in an overlay fashion)

e Animation (fade, fill, stroke, translate, rotate, scale, ...), effects (glow, blend, bloom, blur,
reflection, sepia, shadow, lighting)

* Nodes stylable via CSS

e Some built-in chart widgets

» Flexible and concise data binding via observable properties

* Descriptive layouting via FXML

e Module support (for JDK 9+)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023 1
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2 1 Getting Started

* Graphics transformations and coordinate systems

* Media APIs

e Java Swing interoperability

* Comes as a set of JAR modules and native libraries

* An external Scene Builder for graphically creating scenes
* Printing API

In this book, we describe a subset of these features, giving you a starting point for your own
projects.
Using Kotlin as a programming language instead of Java gives a boost to your coding experience.
Just to give you an example, consider a button with a click handler. In Java, you’d write
Button btn = new Button() ;
btn.setText ("Say 'Hello World'");
btn.setOnAction (new EventHandler<ActionEvents () {
@Override

public void handle (ActionEvent event) {
System.out.println("Hello World!");
}

I3 F;
(255 characters) The very same code written in Kotlin reads

val btn = Button() .apply {
text = "Say 'Hello World'"
setOnAction { _ -»>
println("Hello World!")
}

}

With 142 characters, this is more than 40% shorter than the Java variant! And besides being shorter,
it is also more expressive and by that easier to understand and easier to maintain.

Using some sufficiently nonobtrusive utility functions, this can even be further reduced to 81
characters in size:

val btn = Button("Say 'Hello World'") ({
println("Hello World!")
}

This works by Kotlin’s ability to dynamically add additional constructors to classes.

Gradle for JavaFX and Kotlin

As a build tool, we use Gradle from https://gradle.org/. It is highly flexible, works on any operating
system that provides a Java installation, and by means of plugins or preinstalled components can be
operated from many IDEs.

I first describe the CLI mode for running Gradle builds. This is how you would use it in a server
environment, but it also serves as a good starting point if you want to learn how to use Gradle inside
an IDE workflow.

If not already present, get and install a version 17 JDK. Throughout the book, we will be using
Open]DK 17, but if chances are good you can also take Oracle’s supported JDK 17 or a higher version
from either Oracle or https://openjdk.org/ without any problems possibly coming up.
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Gradle for JavaFX and Kotlin 3

Note Using Oracle’s JDK 17 or higher requires buying a license if you plan to use it for a longer
term; see www.oracle.com/java/.

As a next step, fetch Gradle from https://gradle.org. In this book, we use version 7.6 from https://
gradle.org/next-steps/?version=7.6&format=bin. In order to announce Java to Gradle, either make
sure java and javac (with .bat extension on Windows) are in your PATH, or you have the
environment variable JAVA_HOME point to your JDK installation folder (recommended). To simplify
using Gradle, you can also put GRADLE-INST-DIR/bin (with GRADLE-INST-DIR pointing to your
Gradle folder), or GRADLE-INST-DIR\bin for Windows, on the path.

Note In Linux, environment variables like PATH or JAVA_HOME get set via
export PATH=/bin:/usr/bin:/path/to/my/gradle/bin.
In Windows, you must use the system settings dialog.

In order to check your Gradle installation, in a terminal enter
gradle -version
or, if Gradle is not in the path:

/path/to/gradle -version (Linux)
C:\path\to\gradle.bat -version (Windows)

The output of the command should be similar to

Gradle 7.6

Build time: 2022-11-25 13:35:10 UTC

Revision: daece9dbc5b79370cc8e4fd6fed4b2cd400e150a8

Kotlin: 1.7.10

Groovy: 3.0.13

Ant: Apache Ant (TM) version 1.10.11 compiled on
July 10 2021

JVM: 17.0.1 (Oracle Corporation 17.0.1+12-39)

0S: Linux 5.15.0-56-generic amde64

Important is the “JVM:” line. The Kotlin version shown does not mean you would not be able to build
applications running under a different Kotlin version—it just tells it is using Kotlin 1.7.10 for its own
purposes.

Next, create a project folder anywhere on your system. For our example project, we call it
HelloWorld. Change into that folder:

cd /path/to/HelloWorld (Linux)
chdir C:\path\to\HelloWorld (Windows)

In order to initialize the Gradle project, enter (one line)

gradle init --dsl groovy --incubating
--insecure-protocol ALLOW --package book.kotlinfx
--project-name kotlinfx --test-framework kotlintest
--type kotlin-application

You can also enter just gradle init, but then you will subsequently be asked for project
coordinates inside the terminal.
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4 1 Getting Started

The “init” task creates a simple scaffold project which consists of a main project described by
file settings.gradle and a subproject called “app” in the accordingly named subfolder. The
application can be run by just entering either of

gradle app:run
gradle run

The second variant is possible, because there is just one subproject. By the way, you can list all
possible tasks viagradle tasks orgradle tasks --all, and entering gradle help shows
more info.

Did you notice that two executable files gradlew and gradlew.bat and a folder gradle were
created? This is the Gradle Wrapper, and it is a Gradle installation on its own, and you can henceforth
use it to build the project. Just use gradlew from the wrapper instead of gradle from the Gradle
distribution. You can even delete the main Gradle installation folder at this time, if you like.

It is now time to add JavaFX to the project. In Gradle, the build.gradle file is the main
configuration file for the build process. You can find it inside the app subproject inside the app folder.
Open the file inside a text editor, and inside the plugins { . . . } section, add

plugins {

id 'org.openjfx.javafxplugin' version '0.0.13'

}

This plugin adds almost all that is necessary to add JavaFX to a Java or Kotlin project. Kotlin
capabilities were already added during gradle init. We however still need to make sure that
Kotlin compiles for JDK 17 and that JavaFX uses version 19 and allows for using the modules
“javafx.controls” and “javafx.graphics”. For that aim, add at the end of build.gradle

compileKotlin {
kotlinOptions {

suppressWarnings = true
jvmTarget = "17"
}
1
javafx {
version = "19"
modules ("javafx.controls", "javafx.graphics")

}

EEINT3

Note JavaFX is separated into different modules. The modules “javafx.base”, “javafx.controls”, and
“javafx.graphics” are essential to almost any JavaFX application. Because both the controls and the
graphics module require the base module, the latter gets implicitly included in any build and can be
omitted from the modules list. For more details, see https://openjfx.io/javadoc/19/

In the next section, we code our little “Hello World” JavaFX with Kotlin application.

A HelloWorld Project

The scaffold project built via gradle init just prints “Hello World!” on the console if run. As a
starter JavaFX project, we instead want to show a little window with a button on it reacting to press
events. To do so, replace the contents of

app/src/main/kotlin/book/kotlinfx/App.kt
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by
package book.kotlinfx

import javafx.application.Application
import javafx.event.ActionEvent
import javafx.event.EventHandler
import javafx.scene.Scene

import javafx.scene.control.Button
import javafx.scene.layout.StackPane
import javafx.stage.Stage

fun main(args:Array<Strings) {
Application.launch (HelloWorld::class.java, xargs)

class HelloWorld : Application() ({
override
fun start (primaryStage:Stage) {
primaryStage.title = "Hello World!"
val btn = Button() .apply {
text = "Say 'Hello World'"
setOnAction { evnt -»>
println("Hello World!")
}

}

val root = StackPane () .apply ({
children.add (btn)
}

with (primaryStage) {
scene = Scene(root, 300.0, 250.0)
show ()

}
}
}

Save the file. To now run the application, enter

./gradlew run (Linux)
gradlew run (Windows)

See Figure 1-1.
To first compile and build the project is not necessary—Gradle takes care of that if needed.

Setting Up for Eclipse
Note You can skip this section if you don’t use Eclipse.

Download and install a recent Eclipse IDE from www.eclipse.org/downloads/. Start Eclipse and then,
at Window — Preferences — Java — Installed JREs, register a JDK version 17 and make it the
default. See Figure 1-2.

Then, at File — New — Project... — Gradle — Gradle Project, create a new Gradle project. Once
asked, enter “kotlinfx” as the project’s name; see Figure 1-3.

Keep everything else at its defaults. You end up with a main and a subproject; see Figure 1-4.

The name of the subproject reads “lib.” We want to change it to a more meaningful variant.
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Figure 1-1 JavaFX HelloWorld Running
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Figure 1-2 Eclipse JRE Setting

Preferences x
Installed JREs g

Add, remove or edit JRE definitions. By default, the checked JRE is added to the
build path of newly created Java projects.

Installed JREs:

Add...
B jre [home/peter/Dokumente
= openjdk-17.0.1 (default) foptfopenjdk-17.0.1
Search...
Apply

Cancel Apply and Close

Caution Due to a design issue inside the Gradle-Plugin for Eclipse 2022-12, you cannot rename the
subproject’s name via Mouse-Right — Refactor — Rename. .. We must apply a workaround.
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New Gradle Project x
MNew Gradle Project
Specify the name of the Gradle project to create. w

Projectname kotlinfx
Project location

3 use default location
Location

Working sets

Add project to working sets

Click the Finish button to create the project and import it
into the workspace. Click the Next button to select optional
aptions

@ < Back Next > Cancel

Figure 1-3 Eclipse Gradle Project Wizard

First, edit file settings.gradle. Change the line
include('lib")
->
include ('HelloWorld"')
Now delete the “lib” subproject from Eclipse. Make sure the “Also delete project contents” checkbox
is not checked.
In your system’s file explorer, rename folder 1ib inside WORKSPACE/kotlinfx to
HelloWorld.
On the main project, invoke Mouse-Right — Configure — Configure and Detect Nested
Projects. .. Press the “Finish” button. Ignore possibly shown errors.
Just to be on the safe side, restart Eclipse. The package view should now be as shown in
Figure 1-5.
Back to the application, replace the contents of the build.gradle file by
plugins {
id 'org.jetbrains.kotlin.jvm' version '1.7.10'
id 'application'
id 'org.openjfx.javafxplugin' version '0.0.13"

}

repositories {
mavenCentral ()
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}
dependencies {
}
application {
mainClass = 'book.kotlinfx.AppKt'
}

compileKotlin
kotlinOptions {

suppressWarnings = true
jvmTarget = "17"
}
}
javafx {
version = "19"
modules ("javafx.controls", "javafx.graphics")
}

After changes to file build.gradle, the project regularly needs to be updated: on “kotlinfx,”
press Mouse-Right — Gradle — Refresh Gradle Project. Also, remove the packages inside src/
test/java; we don’t need them for now.

Figure 1-4 Eclipse
Gradle Project

File Edit Source Refactor Navigate Search P

i *vOvavaviweo
{2 Package Explorer x = A
B3 [
w @= kotlinfx
> (= gradle

- gradlew

= gradlew.bat

A settings.gradle
~ 5= lib

> (™ src/mainfjava
(™ sr¢/main/resources
> 8 src/test/java
# src/test/resources
> @\ JRE System Library [JavaSE-17]
> m\ Project and External Dependencies
= bin
> & src
& build.gradle
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