Frontend
Development with
JavaFX and Kotlin

Build State-of-the-Art Kotlin
GUI Applications

Peter Spath

APIESS®

https://lituz.com/shop/

Lituz. con

Frontend Development with JavaFX and Kotlin

https://lituz.com/shop/

Lituz. con

Peter Spath

Frontend Development
with JavaFX and Kotlin

Build State-of-the-Art Kotlin GUI Applications

Apress-

https://lituz.com/shop/

Lituz. con

Peter Spith
Leipzig, Sachsen, Germany

ISBN-13 (pbk): 978-1-4842-9716-2 ISBN-13 (electronic): 978-1-4842-9717-9
https://doi.org/10.1007/978-1-4842-9717-9

Copyright © 2023 by Peter Spith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in
any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of
a trademarked name, logo, or image, we use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such,
is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors
nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher
makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John

Development Editor: Laura Berendson

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Jerryyaar Designer on Pixabay (www.pixabay.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004, U.S.A. Phone 1-
800-SPRINGER, fax (201) 348-4505, e-mail orders-ny @springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC, and the sole member (owner) is Springer Science + Business Media Finance Inc. (SSBM Finance
Inc). SSBM Finance Inc. is a Delaware corporation.

For information on translations, please e-mail booktranslations @springernature.com; for reprint, paperback, or audio rights,
please e-mail bookpermissions @springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also
available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/
bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub (https://
github.com/Apress). For more detailed information, please visit https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

https://doi.org/10.1007/978-1-4842-9717-9
https://doi.org/10.1007/978-1-4842-9717-9
https://doi.org/10.1007/978-1-4842-9717-9
https://doi.org/10.1007/978-1-4842-9717-9
https://doi.org/10.1007/978-1-4842-9717-9
https://doi.org/10.1007/978-1-4842-9717-9
https://doi.org/10.1007/978-1-4842-9717-9
https://doi.org/10.1007/978-1-4842-9717-9
https://doi.org/10.1007/978-1-4842-9717-9
https://doi.org/10.1007/978-1-4842-9717-9

 14932 51250 a 14932 51250 a

 27787 54239 a 27787 54239 a

 14465 57228 a 14465 57228 a

 2588 58224 a 2588 58224 a

http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
https://github.com/Apress
https://github.com/Apress
https://github.com/Apress
https://github.com/Apress
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://www.apress.com/gp/services/source-code
https://lituz.com/shop/

Lituz. con

Contents
1 Getting Started e 1
INtroducCtion 1
Gradle for JavaFX and Kotlin 2
A HelloWorld Projectot 4
Setting Up for ECLIpseo 5
Setting Up for Intelli]o 10
Kotlin and Java Interoperability 13
A Note About Kotlin Utilities for JavaFX 14
A Note About FXMLo 16
A Note About Downloading JavaFX Releases i, 18
Build Setup for This Book 18
2 PrOPeIrtiest 19
Why you Should use Properties.oou ittt e e 19
One-Way and Two-Way Bindingst e 22
Custom Bindings.o oot 26
About Observable ColIeCtionSo ottt e e e 26
SUMIMATY . ..o e e e e e e e e e e e 30
3 Stages and SCEMESo 33
ADOUL SCIENS . .« o ettt ettt e e e e e e e e e e e e e e e e 33
Using Stages and the Application Classttt 35
Dialog-Like Stages 38
The JavaFX Application Thread 39
ADOUL SCEMES . . . o ottt 39
Position and Size 40
CaIMOTA . . oottt e e 41
CUISOT .« .ttt et e e e e e e e e e e e e e 41
Mnemonic and ACCElerators.ttt 42
FOCUS . . . 43
NOde LoOKUDottt 43
SNAPShOLS . . oo 44
Fill and Other Stylest e e 45
Keyboard 46
Mouse EVENLS.o e 48
Mouse Event Handling 50

https://lituz.com/shop/

Lituz. con

Vi Contents
Mouse Drag Event Handling i 52
GOSIUTES . vt vttt ettt e e e e e e e e e e e e e 53

SUMIMATY . .ttt ettt e e e e e e e e e e e e e e e e e e 57
4 Comtainers it 59
StackPane 61
VBox and HBOX 63
FlowPane 65
GridPane e 67
THlePane 69
BorderPane 71
AnchorPane 72
Styling Panes 73
Adding Stylesheets to the Whole Scene, 73
Adding Stylesheets to Individual Panes i 73
JavaFX CSS Selectors forPanes i 74
JavaFX CSS Properties for Panes i 75
SUMIMATY . .ttt ettt e e e e e e e e e e e e e e e e e 78
5 Visual Nodes. e e 79
Node Coordinate SYSIEIMSttt ettt ettt e ettt et e e e e 79
SAPES . oo 81
CaANVAS . .ttt et e 83
IMage NOAESo 84
(@003 515 o) £ 84
Text Fields and TeXt AT€aSttt e e e e e e 84
Action BUttonSo 86
Button Bars 87

1 (S5 110 88
TOOIDATS . .\t e 89
CheCKDOXES o\ ottt e e e e e 89
Radio BUtONS e 90
CombO BOXES . . ottt 91
SIAerS . . oot 92
Miscellaneous CONtrolS.ottt e ettt et et 93
Control Panes 93
Scroll Panes 93
ACCOTAIONSot 96

Tab Panes 96

Splt Panes 97
Styling Visual NOdest e 97
SUMIMATY .ottt e e e e e e e e e e e e e e e e e e 99
6 Listsand Tables. i 101
Lists With LiStVIeW . . . oot e e e e e e e e e 101
Tables With TableViewt e e e 104
Trees With TreeViewo e e e e 109

SUMMATY . oottt e e e e e e e e e e e e e e e 112

https://lituz.com/shop/

Lituz. con

Contents vii
T EVeIES .. 113
What Events Are and Event Processing i 113
Event Handlers and Filtersot e e 114
Drag and Drop Proceduresooiuii 116
SUMIMATY . . ettt ettt e e e e e e e e e e e e e e e e e e 119

8 Effectsand Animation 121
AbOUt B eCtS . . . oo 121
ANImating YOUTr SCENES . . . oo vttt ettt et ettt e et e e e e e e 122
TraNSItIONS & v\ vttt ettt ettt e e e e e e et e e e e e e 124
Timeline ANIMationsS.ttt ettt e e et e ettt 125
SUMMATY . . oottt e e e e e e e e e et e e e 126

O CONCUITENCYttt ettt e et e e e e e e e e e e e et e e e e et et 127
The JavaFX Concurrency Framework 127
About Kotlin Coroutines for JavaFX 131
SUMIMATY . ..ottt e e e e e e e e e e e e e e e e e e e 134

https://lituz.com/shop/

Lituz. conm

About the Author

Peter Spéth graduated in 2002 as a physicist and soon afterward became an IT consultant, mainly for
Java-related projects. In 2016, he decided to concentrate on writing books on various aspects, but with
a main focus on software development. With two books about graphics and sound processing, three
books on Android app development, and a couple of books about Java, Jakarta EE, and Kotlin, Peter
continues his effort in writing software development-related literature.

https://lituz.com/shop/

Lituz. conm

About the Technical Reviewer

Massimo Nardone has more than 25 years of experience in security,
web and mobile development, cloud, and IT architecture. His true
IT passions are security and Android. He has been programming
and teaching how to program with Android, Perl, PHP, Java, VB,
Python, C/C++, and MySQL for more than 20 years. He holds a
Master of Science degree in Computing Science from the University
of Salerno, Italy. He has worked as a CISO, CSO, security executive,
IoT executive, project manager, software engineer, research engineer,
chief security architect, PCI/SCADA auditor, and senior lead IT
security/cloud/SCADA architect for many years. His technical skills
include security, Android, cloud, Java, MySQL, Drupal, Cobol, Perl,
web and mobile development, MongoDB, D3, Joomla, Couchbase,
C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll, Scratch,
and more. He worked as visiting lecturer and supervisor for exercises
at the Networking Laboratory of the Helsinki University of Technol-
ogy (Aalto University). He holds four international patents (PKI, SIP,
SAML, and Proxy areas). He is currently working for Cognizant as
head of cyber security and CISO to help both internally and externally
with clients in areas of information and cyber security, like strategy,
planning, processes, policies, procedures, governance, awareness,
and so forth. In June 2017 he became a permanent member of the
ISACA Finland Chapter Board.

Massimo has reviewed more than 45 IT books for different
publishing companies and is the coauthor of Pro Spring Security:
Securing Spring Framework 5 and Boot 2-based Java Applications
(Apress, 2019), Beginning EJB in Java EE 8 (Apress, 2018), Pro
JPA 2 in Java EE 8 (Apress, 2018), and Pro Android Games (Apress,
2015).

Xi

https://lituz.com/shop/

Lituz. con

Introduction

Building elegant and highly responsible, responsive, and stable Java client applications (fat clients)
is a highly acceptable approach if security considerations or network availability speaks against
web applications, or maintaining servers and server applications lies out of scope for your project.
Additionally, using Kotlin as a programming language boosts code expressiveness and maintainability,
allowing for a development yielding a clean code approach.

The book introduces JavaFX as a frontend technology and from the very beginning focuses
on using Kotlin instead of Java for coding the program artifacts. Many listings and code snippets
accompany the text, readily allowing for a hands-on learning style.

The Book’s Targeted Audience

The book is for low- to mid-level Java or Kotlin developers with or without JavaFX experience,
wishing to learn how to build JavaFX applications with Kotlin.

The readers will in the end be able to use Kotlin as a language for building basic to moderately
advanced and elaborated apps targeting JavaFX.

Any experience in using JavaFX and frontend coding is not a requirement for reading the book.
Being a Kotlin expert is not necessary either, but having read introductory-level books or studied
online resources is surely helpful. The online documentation of Kotlin and JavaFX also provides
valuable resources you can use as a reference while reading this book.

Source Code

All source code shown or referred to in this book can be found at github.com/apress/frontend-
development-javafx-kotlin.

How to Read This Book

This book should be read sequentially to get the most benefit from it. Of course, you can skip one
or the other chapter if you already gained knowledge elsewhere. Taking its introductory nature, the
book is not meant to present a reference fully covering each and every aspect of Kotlin frontend
programming or JavaFX, so also consulting the online documentation at

https://openjfx.io/

https://openjfx.io/javadoc/19/

https://kotlinlang.org/docs/home.html

xiii

https://github.com/apress/frontend-development-javafx-kotlin
https://openjfx.io/
https://openjfx.io/
https://openjfx.io/
https://openjfx.io/javadoc/19/
https://openjfx.io/javadoc/19/
https://openjfx.io/javadoc/19/
https://openjfx.io/javadoc/19/
https://openjfx.io/javadoc/19/
https://kotlinlang.org/docs/home.html
https://kotlinlang.org/docs/home.html
https://kotlinlang.org/docs/home.html
https://kotlinlang.org/docs/home.html
https://kotlinlang.org/docs/home.html
https://kotlinlang.org/docs/home.html
https://lituz.com/shop/

Lituz. con

Xiv Introduction

while you are reading the book certainly is not a bad idea.

The book is split up into nine chapters. Chapter 1 gives a general introduction and presents hello
world-style programs for Gradle, Eclipse, and IntelliJ.

Chapter 2 talks about using properties as data holders and addresses one- and two-way binding
techniques for connecting controls and data in your program.

Chapter 3 introduces stages and scenes, which serve as primordial containers for visual artifacts.

Chapter 4 talks about containers and ways to lay out and style your scenes.

Chapter 5 handles nodes and controls including styling. These aspects usually constitute the biggest
part of your project work speaking of time budget.

Chapter 6 presents lists and tables, which are particularly important for enterprise-level projects.

Chapter 7 is for summarizing and deepening our knowledge about event handling in JavaFX. This
also includes drag and drop procedures.

Chapter 8 introduces effects and animation, improving user experience and giving your programs
some eye candies.

As a prospect, Chapter 9 briefly introduces concurrency techniques, giving you a starting point for
handling background processing needs.

 20686 1097 a 20686 1097 a

 2875 3875 a 2875 3875 a

 2773 6652 a 2773 6652
a

 2773
8041 a 2773 8041 a

 2716 9430 a 2716 9430 a

 2773 12208 a 2773 12208 a

 2779 13597 a 2779 13597 a

 2803 16375 a 2803 16375 a

 9327
19152 a 9327 19152 a

https://lituz.com/shop/

Lituz. con
®

Check for
updates

In this chapter, we give a brief introduction to using JavaFX and Kotlin together, and we create “Hello
World”—style projects for the command line, for Eclipse, and for IntelliJ IDEA.

Introduction

JavaFX is the dedicated fat client (desktop application) GUI toolkit for current Java releases. It is
the replacement and successor of the venerable Java Swing technology. This switch happened around
2010, and since then JavaFX has been constantly improved and extended. With JREs up to version
JDK 9, JavaFX was part of the Java distribution—with JDK 11 and later, it has to be installed
separately.

The following features describe JavaFX:

¢ Built-in controls: Labels, editable text fields, buttons, combo boxes, checkboxes, radio buttons,
menu bars, scrollbars, accordion, tabs, canvas (for drawing shapes and figures), color picker, pag-
ination, 3D graphics (games, science, product presentation), WebView (presenting and interacting
with web contents), dialogs, sliders, spinners, progress bars

e Lists, tables, trees

e Built-in layouts: AnchorPane (anchoring nodes to one of the edges or to the center point),
BorderPane (placing nodes at bottom, top, right, left, center), FlowPane (placing nodes consec-
utively and wrapping at the boundaries), TilePane (same as FlowPane, but with all cells the same
size), GridPane (placing nodes in a grid with cell sizes dynamically calculated and on demand
spanning several rows and columns), VBox (placing nodes in columns), HBox (placing nodes in
rows), StackPane (placing nodes in an overlay fashion)

e Animation (fade, fill, stroke, translate, rotate, scale, ...), effects (glow, blend, bloom, blur,
reflection, sepia, shadow, lighting)

* Nodes stylable via CSS

e Some built-in chart widgets

» Flexible and concise data binding via observable properties

* Descriptive layouting via FXML

e Module support (for JDK 9+)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023 1
P. Spith, Frontend Development with JavaFX and Kotlin,
https://doi.org/10.1007/978-1-4842-9717-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4842-9717-9protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-1-4842-9717-9_1
https://doi.org/10.1007/978-1-4842-9717-9_1
https://doi.org/10.1007/978-1-4842-9717-9_1
https://doi.org/10.1007/978-1-4842-9717-9_1
https://doi.org/10.1007/978-1-4842-9717-9_1
https://doi.org/10.1007/978-1-4842-9717-9_1
https://doi.org/10.1007/978-1-4842-9717-9_1
https://doi.org/10.1007/978-1-4842-9717-9_1
https://doi.org/10.1007/978-1-4842-9717-9_1
https://doi.org/10.1007/978-1-4842-9717-9_1
https://doi.org/10.1007/978-1-4842-9717-9_1
https://lituz.com/shop/

Lituz. con

2 1 Getting Started

* Graphics transformations and coordinate systems

* Media APIs

e Java Swing interoperability

* Comes as a set of JAR modules and native libraries

* An external Scene Builder for graphically creating scenes
* Printing API

In this book, we describe a subset of these features, giving you a starting point for your own
projects.
Using Kotlin as a programming language instead of Java gives a boost to your coding experience.
Just to give you an example, consider a button with a click handler. In Java, you’d write
Button btn = new Button() ;
btn.setText ("Say 'Hello World'");
btn.setOnAction (new EventHandler<ActionEvents () {
@Override

public void handle (ActionEvent event) {
System.out.println("Hello World!");
}

I3 F;
(255 characters) The very same code written in Kotlin reads

val btn = Button() .apply {
text = "Say 'Hello World'"
setOnAction { _ -»>
println("Hello World!")
}

}

With 142 characters, this is more than 40% shorter than the Java variant! And besides being shorter,
it is also more expressive and by that easier to understand and easier to maintain.

Using some sufficiently nonobtrusive utility functions, this can even be further reduced to 81
characters in size:

val btn = Button("Say 'Hello World'") ({
println("Hello World!")
}

This works by Kotlin’s ability to dynamically add additional constructors to classes.

Gradle for JavaFX and Kotlin

As a build tool, we use Gradle from https://gradle.org/. It is highly flexible, works on any operating
system that provides a Java installation, and by means of plugins or preinstalled components can be
operated from many IDEs.

I first describe the CLI mode for running Gradle builds. This is how you would use it in a server
environment, but it also serves as a good starting point if you want to learn how to use Gradle inside
an IDE workflow.

If not already present, get and install a version 17 JDK. Throughout the book, we will be using
Open]DK 17, but if chances are good you can also take Oracle’s supported JDK 17 or a higher version
from either Oracle or https://openjdk.org/ without any problems possibly coming up.

https://gradle.org/
https://gradle.org/
https://gradle.org/
https://openjdk.org/
https://openjdk.org/
https://openjdk.org/
https://lituz.com/shop/

Lituz. con

Gradle for JavaFX and Kotlin 3

Note Using Oracle’s JDK 17 or higher requires buying a license if you plan to use it for a longer
term; see www.oracle.com/java/.

As a next step, fetch Gradle from https://gradle.org. In this book, we use version 7.6 from https://
gradle.org/next-steps/?version=7.6&format=bin. In order to announce Java to Gradle, either make
sure java and javac (with .bat extension on Windows) are in your PATH, or you have the
environment variable JAVA_HOME point to your JDK installation folder (recommended). To simplify
using Gradle, you can also put GRADLE-INST-DIR/bin (with GRADLE-INST-DIR pointing to your
Gradle folder), or GRADLE-INST-DIR\bin for Windows, on the path.

Note In Linux, environment variables like PATH or JAVA_HOME get set via
export PATH=/bin:/usr/bin:/path/to/my/gradle/bin.
In Windows, you must use the system settings dialog.

In order to check your Gradle installation, in a terminal enter
gradle -version
or, if Gradle is not in the path:

/path/to/gradle -version (Linux)
C:\path\to\gradle.bat -version (Windows)

The output of the command should be similar to

Gradle 7.6

Build time: 2022-11-25 13:35:10 UTC

Revision: daece9dbc5b79370cc8e4fd6fed4b2cd400e150a8

Kotlin: 1.7.10

Groovy: 3.0.13

Ant: Apache Ant (TM) version 1.10.11 compiled on
July 10 2021

JVM: 17.0.1 (Oracle Corporation 17.0.1+12-39)

0S: Linux 5.15.0-56-generic amde64

Important is the “JVM:” line. The Kotlin version shown does not mean you would not be able to build
applications running under a different Kotlin version—it just tells it is using Kotlin 1.7.10 for its own
purposes.

Next, create a project folder anywhere on your system. For our example project, we call it
HelloWorld. Change into that folder:

cd /path/to/HelloWorld (Linux)
chdir C:\path\to\HelloWorld (Windows)

In order to initialize the Gradle project, enter (one line)

gradle init --dsl groovy --incubating
--insecure-protocol ALLOW --package book.kotlinfx
--project-name kotlinfx --test-framework kotlintest
--type kotlin-application

You can also enter just gradle init, but then you will subsequently be asked for project
coordinates inside the terminal.

www.oracle.com/java/
www.oracle.com/java/
www.oracle.com/java/
www.oracle.com/java/
https://gradle.org
https://gradle.org
https://gradle.org
https://gradle.org/next-steps/?version=7.6&format=bin
https://gradle.org/next-steps/?version=7.6&format=bin
https://gradle.org/next-steps/?version=7.6&format=bin
https://gradle.org/next-steps/?version=7.6&format=bin
https://gradle.org/next-steps/?version=7.6&format=bin
https://gradle.org/next-steps/?version=7.6&format=bin
https://gradle.org/next-steps/?version=7.6&format=bin
https://gradle.org/next-steps/?version=7.6&format=bin
https://gradle.org/next-steps/?version=7.6&format=bin
https://gradle.org/next-steps/?version=7.6&format=bin
https://lituz.com/shop/

Lituz. con

4 1 Getting Started

The “init” task creates a simple scaffold project which consists of a main project described by
file settings.gradle and a subproject called “app” in the accordingly named subfolder. The
application can be run by just entering either of

gradle app:run
gradle run

The second variant is possible, because there is just one subproject. By the way, you can list all
possible tasks viagradle tasks orgradle tasks --all, and entering gradle help shows
more info.

Did you notice that two executable files gradlew and gradlew.bat and a folder gradle were
created? This is the Gradle Wrapper, and it is a Gradle installation on its own, and you can henceforth
use it to build the project. Just use gradlew from the wrapper instead of gradle from the Gradle
distribution. You can even delete the main Gradle installation folder at this time, if you like.

It is now time to add JavaFX to the project. In Gradle, the build.gradle file is the main
configuration file for the build process. You can find it inside the app subproject inside the app folder.
Open the file inside a text editor, and inside the plugins { . . . } section, add

plugins {

id 'org.openjfx.javafxplugin' version '0.0.13'

}

This plugin adds almost all that is necessary to add JavaFX to a Java or Kotlin project. Kotlin
capabilities were already added during gradle init. We however still need to make sure that
Kotlin compiles for JDK 17 and that JavaFX uses version 19 and allows for using the modules
“javafx.controls” and “javafx.graphics”. For that aim, add at the end of build.gradle

compileKotlin {
kotlinOptions {

suppressWarnings = true
jvmTarget = "17"
}
1
javafx {
version = "19"
modules ("javafx.controls", "javafx.graphics")

}

EEINT3

Note JavaFX is separated into different modules. The modules “javafx.base”, “javafx.controls”, and
“javafx.graphics” are essential to almost any JavaFX application. Because both the controls and the
graphics module require the base module, the latter gets implicitly included in any build and can be
omitted from the modules list. For more details, see https://openjfx.io/javadoc/19/

In the next section, we code our little “Hello World” JavaFX with Kotlin application.

A HelloWorld Project

The scaffold project built via gradle init just prints “Hello World!” on the console if run. As a
starter JavaFX project, we instead want to show a little window with a button on it reacting to press
events. To do so, replace the contents of

app/src/main/kotlin/book/kotlinfx/App.kt

https://openjfx.io/javadoc/19/
https://openjfx.io/javadoc/19/
https://openjfx.io/javadoc/19/
https://openjfx.io/javadoc/19/
https://openjfx.io/javadoc/19/
https://lituz.com/shop/

Lituz. con

Setting Up for Eclipse 5

by
package book.kotlinfx

import javafx.application.Application
import javafx.event.ActionEvent
import javafx.event.EventHandler
import javafx.scene.Scene

import javafx.scene.control.Button
import javafx.scene.layout.StackPane
import javafx.stage.Stage

fun main(args:Array<Strings) {
Application.launch (HelloWorld::class.java, xargs)

class HelloWorld : Application() ({
override
fun start (primaryStage:Stage) {
primaryStage.title = "Hello World!"
val btn = Button() .apply {
text = "Say 'Hello World'"
setOnAction { evnt -»>
println("Hello World!")
}

}

val root = StackPane () .apply ({
children.add (btn)
}

with (primaryStage) {
scene = Scene(root, 300.0, 250.0)
show ()

}
}
}

Save the file. To now run the application, enter

./gradlew run (Linux)
gradlew run (Windows)

See Figure 1-1.
To first compile and build the project is not necessary—Gradle takes care of that if needed.

Setting Up for Eclipse
Note You can skip this section if you don’t use Eclipse.

Download and install a recent Eclipse IDE from www.eclipse.org/downloads/. Start Eclipse and then,
at Window — Preferences — Java — Installed JREs, register a JDK version 17 and make it the
default. See Figure 1-2.

Then, at File — New — Project... — Gradle — Gradle Project, create a new Gradle project. Once
asked, enter “kotlinfx” as the project’s name; see Figure 1-3.

Keep everything else at its defaults. You end up with a main and a subproject; see Figure 1-4.

The name of the subproject reads “lib.” We want to change it to a more meaningful variant.

www.eclipse.org/downloads/
www.eclipse.org/downloads/
www.eclipse.org/downloads/
www.eclipse.org/downloads/
https://lituz.com/shop/

Lituz. conm

1 Getting Started

Helloworldt - 0O X

(Say el Wor

Figure 1-1 JavaFX HelloWorld Running

type filter text

General
Ant
Gradle
Help
Install/Update
~ Java
> Appearance
» Build Path
Code Coverage
» Code Style
» Compiler
» Debug
» Editor
Junit
Properties Files Ed
> Language Servers
> Maven
» Oomph

Y R

Deh®

Figure 1-2 Eclipse JRE Setting

Preferences x
Installed JREs g

Add, remove or edit JRE definitions. By default, the checked JRE is added to the
build path of newly created Java projects.

Installed JREs:

Add...
B jre [home/peter/Dokumente
= openjdk-17.0.1 (default) foptfopenjdk-17.0.1
Search...
Apply

Cancel Apply and Close

Caution Due to a design issue inside the Gradle-Plugin for Eclipse 2022-12, you cannot rename the
subproject’s name via Mouse-Right — Refactor — Rename. .. We must apply a workaround.

https://lituz.com/shop/

Lituz. con

Setting Up for Eclipse 7
New Gradle Project x
MNew Gradle Project
Specify the name of the Gradle project to create. w

Projectname kotlinfx
Project location

3 use default location
Location

Working sets

Add project to working sets

Click the Finish button to create the project and import it
into the workspace. Click the Next button to select optional
aptions

@ < Back Next > Cancel

Figure 1-3 Eclipse Gradle Project Wizard

First, edit file settings.gradle. Change the line
include('lib")
->
include ('HelloWorld"')
Now delete the “lib” subproject from Eclipse. Make sure the “Also delete project contents” checkbox
is not checked.
In your system’s file explorer, rename folder 1ib inside WORKSPACE/kotlinfx to
HelloWorld.
On the main project, invoke Mouse-Right — Configure — Configure and Detect Nested
Projects. .. Press the “Finish” button. Ignore possibly shown errors.
Just to be on the safe side, restart Eclipse. The package view should now be as shown in
Figure 1-5.
Back to the application, replace the contents of the build.gradle file by
plugins {
id 'org.jetbrains.kotlin.jvm' version '1.7.10'
id 'application'
id 'org.openjfx.javafxplugin' version '0.0.13"

}

repositories {
mavenCentral ()

https://lituz.com/shop/

Lituz. conm

8 1 Getting Started
}
dependencies {
}
application {
mainClass = 'book.kotlinfx.AppKt'
}

compileKotlin
kotlinOptions {

suppressWarnings = true
jvmTarget = "17"
}
}
javafx {
version = "19"
modules ("javafx.controls", "javafx.graphics")
}

After changes to file build.gradle, the project regularly needs to be updated: on “kotlinfx,”
press Mouse-Right — Gradle — Refresh Gradle Project. Also, remove the packages inside src/
test/java; we don’t need them for now.

Figure 1-4 Eclipse
Gradle Project

File Edit Source Refactor Navigate Search P

i *vOvavaviweo
{2 Package Explorer x = A
B3 [
w @= kotlinfx
> (= gradle

- gradlew

= gradlew.bat

A settings.gradle
~ 5= lib

> (™ src/mainfjava
(™ sr¢/main/resources
> 8 src/test/java
src/test/resources
> @\ JRE System Library [JavaSE-17]
> m\ Project and External Dependencies
= bin
> & src
& build.gradle

https://lituz.com/shop/

m Lituz.com

-\

To'liq qismini
Shu tugmani
bosish orqali
sotib oling!

umirzoq2010@outlook.com�f””wðHﬂyƒ(Ê�—–FÛ„^°šG5Ñï
Typewritten text���`�îz4ñöºıˇ`Hÿ_úµ±&šµ3@˜år0ý†Y
Lituz.com

umirzoq2010@outlook.comˆ‚7�_áÄÐÏãÁ˚ó98›5/·{BÌÙ¾?
Typewritten textłiëXx›"�ÈœÕ�±r¾ûl>Ï¬ÄC⁄Á²µ⁄E¡=¶Õ
To'liq qismini Shu tugmani bosish orqali sotib oling!¼˛È/uôø>æ‹¡tˇìÎˇð*ªfÎÇ¡°Íãn

http://www.lituz.comQ(�%��]�Y�C������6�{��Q@�Z�(
https://lituz.com/product/frontend-development/

	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	The Book's Targeted Audience
	Source Code
	How to Read This Book

	1 Getting Started
	Introduction
	Gradle for JavaFX and Kotlin
	A HelloWorld Project
	Setting Up for Eclipse

