
Lituz.com

https://lituz.com/shop/


Statistical Physics

Lituz.com

https://lituz.com/shop/


Lituz.com

https://lituz.com/shop/


Statistical Physics

Second Revised and Enlarged Edition

by

Tony Guénault
Emeritus Professor of Low Temperature Physics
Lancaster University, UK

Lituz.com

https://lituz.com/shop/


A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4020-5974-2 (PB)
ISBN 978-1-4020-5975-9 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

First edition 1988
Second edition 1995
Reprinted 1996, 2000, 2001, 2003
Reprinted revised and enlarged second edition 2007

All Rights Reserved
© 1988, 1995 A.M. Guénault
© 2007 Springer
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Lituz.com

https://lituz.com/shop/


Table of contents

Preface ix

1 Basic ideas 1
1.1 The macrostate 1
1.2 Microstates 2
1.3 The averaging postulate 3
1.4 Distributions 4
1.5 The statistical method in outline 6
1.6 A model example 7
1.7 Statistical entropy and microstates 10
1.8 Summary 11

2 Distinguishable particles 13
2.1 The Thermal Equilibrium Distribution 14
2.2 What are α and β? 17
2.3 A statistical definition of temperature 18
2.4 The boltzmann distribution and the partition function 21
2.5 Calculation of thermodynamic functions 22
2.6 Summary 23

3 Two examples 25
3.1 A Spin- 1

2 solid 25
3.2 Localized harmonic oscillators 36
3.3 Summary 40

4 Gases: the density of states 43
4.1 Fitting waves into boxes 43
4.2 Other information for statistical physics 47
4.3 An example – helium gas 48
4.4 Summary 49

5 Gases: the distributions 51
5.1 Distribution in groups 51
5.2 Identical particles – fermions and bosons 53
5.3 Counting microstates for gases 55
5.4 The three distributions 58
5.5 Summary 61

v

Lituz.com

https://lituz.com/shop/


vi Table of contents

6 Maxwell–Boltzmann gases 63
6.1 The validity of the Maxwell–Boltzmann limit 63
6.2 The Maxwell–Boltzmann distribution of speeds 65
6.3 The connection to thermodynamics 68
6.4 Summary 71

7 Diatomic gases 73
7.1 Energy contributions in diatomic gases 73
7.2 Heat capacity of a diatomic gas 75
7.3 The heat capacity of hydrogen 78
7.4 Summary 81

8 Fermi–Dirac gases 83
8.1 Properties of an ideal Fermi–Dirac gas 84
8.2 Application to metals 91
8.3 Application to helium-3 92
8.4 Summary 95

9 Bose–Einstein gases 97
9.1 Properties of an ideal Bose–Einstein gas 97
9.2 Application to helium-4 101
9.3 Phoney bosons 104
9.4 A note about cold atoms 109
9.5 Summary 109

10 Entropy in other situations 111
10.1 Entropy and disorder 111
10.2 An assembly at fixed temperature 114
10.3 Vacancies in solids 116

11 Phase transitions 119
11.1 Types of phase transition 119
11.2 Ferromagnetism of a spin- 1

2 solid 120
11.3 Real ferromagnetic materials 126
11.4 Order–disorder transformations in alloys 127

12 Two new ideas 129
12.1 Statics or dynamics? 129
12.2 Ensembles – a larger view 132

13 Chemical thermodynamics 137
13.1 Chemical potential revisited 137
13.2 The grand canonical ensemble 139
13.3 Ideal gases in the grand ensemble 141
13.4 Mixed systems and chemical reactions 146

Lituz.com

https://lituz.com/shop/


Table of contents vii

14 Dealing with interactions 153
14.1 Electrons in metals 154
14.2 Liquid helium-3: A Fermi liquid 158
14.3 Liquid helium-4: A Bose liquid? 163
14.4 Real imperfect gases 164

15 Statistics under extreme conditions 169
15.1 Superfluid states in Fermi–Dirac systems 169
15.2 Statistics in astrophysical systems 174

Appendix A Some elementary counting problems 181

Appendix B Some problems with large numbers 183

Appendix C Some useful integrals 187

Appendix D Some useful constants 191

Appendix E Exercises 193

Appendix F Answers to exercises 199

Index 201

Lituz.com

https://lituz.com/shop/


Lituz.com

https://lituz.com/shop/


Preface

Preface to the first edition

Statistical physics is not a difficult subject, and I trust that this will not be found a
difficult book. It contains much that a number of generations of Lancaster students
have studied with me, as part of their physics honours degree work. The lecture course
was of 20 hours’duration, and I have added comparatively little to the lecture syllabus.
A prerequisite is that the reader should have a working knowledge of basic thermal
physics (i.e. the laws of thermodynamics and their application to simple substances).
The book Thermal Physics by Colin Finn in this series forms an ideal introduction.

Statistical physics has a thousand and one different ways of approaching the same
basic results. I have chosen a rather down-to-earth and unsophisticated approach,
without I hope totally obscuring the considerable interest of the fundamentals. This
enables applications to be introduced at an early stage in the book.

As a low-temperature physicist, I have always found a particular interest in sta-
tistical physics, and especially in how the absolute zero is approached. I should not,
therefore, apologize for the low-temperature bias in the topics which I have selected
from the many possibilities.

Without burdening them with any responsibility for my competence, I would like
to acknowledge how much I have learned in very different ways from my first three
‘bosses’as a trainee physicist: Brian Pippard, Keith MacDonald and Sydney Dugdale.
More recently my colleagues at Lancaster, George Pickett, David Meredith, Peter
McClintock, Arthur Clegg and many others have done much to keep me on the rails.
Finally, but most of all, I thank my wife Joan for her encouragement.

A.M. Guénault
1988

Preface to the second edition

Some new material has been added to this second edition, whilst leaving the
organization of the rest of the book (Chapters 1–12) unchanged. The new
chapters aim to illustrate the basic ideas in three rather distinct and (almost)
independent ways. Chapter 13 gives a discussion of chemical thermodynamics,
including something about chemical equilibrium. Chapter 14 explores how some
interacting systems can still be treated by a simple statistical approach, and Chapter 15
looks at two interesting applications of statistical physics, namely superfluids and
astrophysics.

ix
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x Preface

The book will, I hope, be useful for university courses of various lengths and types.
Several examples follow:

1. Basic general course for physics undergraduates (20–25 lectures): most of
Chapters 1–12, omitting any of Chapters 7, 10, 11 and 12 if time is short;

2. Short introductory course on statistical ideas (about 10 lectures): Chapters 1, 2
and 3 possibly with material added from Chapters 10 and 11;

3. Following (2), a further short course on statistics of gases (15 lectures):
Chapters 4–6 and 8–9, with additional material available from Chapter 14 and
15.2;

4. For chemical physics (20 lectures): Chapters 1–7 and 10–13;
5. As an introduction to condensed matter physics (20 lectures): Chapters 1–6, 8–12,

14, 15.1.

In addition to those already acknowledged earlier, I would like to thank Keith
Wigmore for his thorough reading of the first edition and Terry Sloan for his
considerable input to my understanding of the material in section 15.2.1.

A.M. Guénault
1994

Preface to the revised and enlarged
second edition

This third edition of Statistical Physics follows the organization and purpose of the
second edition, with comparatively minor updating and changes to the text. I hope it
continues to provide an accessible introduction to the subject, particularly suitable for
physics undergraduates. Chapter summaries have been added to the first nine (basic)
chapters, in order to encourage students to revise the important ideas of each chapter –
essential background for an informed understanding of later chapters.

A.M. Guénault
2007
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Preface xi

A SURVIVAL GUIDE TO STATISTICAL PHYSICS
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1

Basic ideas

There is an obvious problem about getting to grips with an understanding of matter in
thermal equilibrium. Let us suppose you are interested (as a designer of saucepans?)
in the thermal capacity of copper at 450 K. On the one hand you can turn to ther-
modynamics, but this approach is of such generality that it is often difficult to see
the point. Relationships between the principal heat capacities, the thermal expansion
coefficient and the compressibility are all very well, but they do not help you to
understand the particular magnitude and temperature dependence of the actual heat
capacity of copper. On the other hand, you can see that what is needed is a micro-
scopic mechanical picture of what is going on inside the copper. However, this picture
becomes impossibly detailed when one starts to discuss the laws of motion of 1024

or so copper atoms.
The aim of statistical physics is to make a bridge between the over-elaborate detail

of mechanics and the obscure generalities of thermodynamics. In this chapter we shall
look at one way of making such a bridge. Most readers will already be familiar with
the kinetic theory of ideal gases. The treatment given here will enable us to discuss
a much wider variety of matter than this, although there will nevertheless be some
limitations to the traffic that can travel across the bridge.

1.1 THE MACROSTATE

The basic task of statistical physics is to take a system which is in a well-defined
thermodynamic state and to compute the various thermodynamic properties of that
system from an (assumed) microscopic model.

The ‘macrostate’ is another word for the thermodynamic state of the system. It is
a specification of a system which contains just enough information for its thermody-
namic state to be well defined, but no more information than that. As outlined in most
books on thermal physics (e.g. Finn’s book Thermal Physics in this series), for the
simple case of a pure substance this will involve:

• the nature of the substance – e.g. natural copper;
• the amount of the substance – e.g. 1.5 moles;

1
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2 Basic ideas

• a small number of pairs of thermodynamic co-ordinates – e.g. pressure P and
volume V ; magnetic field B and magnetization M ; surface tension and surface
area, etc.

Each of these pairs is associated with a way of doing work on the system. For many
systems only P − V work is relevant, and (merely for brevity) we shall phrase what
follows in terms of P − V work only. Magnetic systems will also appear later in the
book.

In practice the two co-ordinates specified, rather than being P and V , will be those
appropriate to the external conditions. For instance, the lump of copper might be at a
specific pressure P (= 1 atm) and temperature T (= 450 K). In this case the macrostate
would be defined by P and T ; and the volume V and internal energy U and other
parameters would then all be determined in principle from P and T . It is precisely
one of the objectives of statistical physics to obtain from first principles what are
these values of V , U , etc. (In fact, we need not set our sights as low as this. Statistical
physics also gives detailed insights into dynamical properties, and an example of this
is given in Chapter 12.)

Now comes, by choice, an important limitation. In order to have a concrete situation
to discuss in this chapter (and indeed throughout the first eight chapters of this book),
we shall concentrate on one particular type of macrostate, namely that appropriate
to an isolated system. Therefore the macrostate will be defined by the nature of the
substance, the amount, and by U and V . For the isolated system in its energy-proof
enclosure, the internal energy is a fixed constant, and V is also constant since no work
is to be done on the system. The (fixed) amount of the substance we can characterize
by the number N of microscopic ‘particles’ making up the system.

This limitation is not too severe in practice. For an isolated system in which
N is reasonably large, fluctuations in (say) T are small and one finds that T is
determined really rather precisely by (N , U , V ). Consequently one can use results
based on the (N , U , V ) macrostate in order to discuss equally well the behaviour in
any other macrostate, such as the (N , P, T ) macrostate appropriate to our piece of
copper.

Towards the end of the book (Chapters 12 and 13, in particular), we shall return to
the question as to how to set up methods of statistical physics which correspond to
other macrostates.

1.2 MICROSTATES

Let us now consider the mechanical microscopic properties of the system of inter-
est, which we are assuming to be an assembly of N identical microscopic particles.
For the given (N , U , V ) macrostate there are an enormous number of possible
‘microstates’.

The word microstate means the most detailed specification of the assembly that
can be imagined. For example, in the classical kinetic theory of gases, the microstate
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The averaging postulate 3

would need to specify the (vector) position and momentum of each of the N gas par-
ticles, a total of 6N co-ordinates. (Actually even this is assuming that each particle
is a structureless point, with no internal degrees of freedom like rotation, vibration,
etc.) Of course, this microstate contains a totally indigestible amount of informa-
tion, far too much for one to store even one microstate in the largest available
computer. But, worse still, the system changes its microstate very rapidly indeed –
for instance one mole of a typical gas will change its microstate roughly 1032 times
a second.

Clearly some sort of averaging over microstates is needed. And here is one of those
happy occasions where quantum mechanics turns out to be a lot easier than classical
mechanics.

The conceptual problem for classical microstates, as outlined above for a gas, is that
they are infinite in number. The triumph of Boltzmann in the late 19th century – had
he lived to see the full justification of it – and of Gibbs around the turn of the century,
was to see how to do the averaging nevertheless. They observed that a system spends
equal times in equal volumes of ‘phase-space’ (a combined position and momentum
space; we shall develop these ideas much later in the book, in section 14.4). Hence the
volume in phase-space can be used as a statistical weight for microstates within that
volume. Splitting the whole of phase-space into small volume elements, therefore,
leads to a feasible procedure for averaging over all microstates as required. However,
we can nowadays adopt a much simpler approach.

In quantum mechanics a microstate by definition is a quantum state of the whole
assembly. It can be described by a single N -particle wave function, containing all
the information possible about the state of the system. The point to appreciate is that
quantum states are discrete in principle. Hence although the macrostate (N , U , V )

has an enormous number of possible microstates consistent with it, the number is
none the less definite and finite. We shall call this number �, and it turns out to play
a central role in the statistical treatment.

1.3 THE AVERAGING POSTULATE

We now come to the assumption which is the whole basis of statistical physics:

All accessible microstates are equally probable.

This averaging postulate is to be treated as an assumption, but it is of interest to
observe that it is nevertheless a reasonable one. Two types of supporting argument
can be produced.

The first argument is to talk about time-averages. Making any physical measure-
ment (say, of the pressure of a gas on the wall of its container) takes a non-zero time;
and in the time of the measurement the system will have passed through a very large
number of microstates. In fact this is why we get a reproducible value of P; observ-
able fluctuations are small over the appropriate time scale. Hence it is reasonable that
we should be averaging effectively over all accessible microstates. The qualification
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4 Basic ideas

‘accessible’ is included to allow for the possibility of metastability. There can be
situations in which groups of microstates are not in fact accessed in the time scale
of the measurement, so that there is in effect another constant of the motion, besides
N , U and V ; only a subset of the total number � of microstates should then be aver-
aged. We shall return to this point in later chapters, but will assume for the present
that all � microstates are readily accessible from each other. Hence the time-average
argument indicates that averaging over all microstates is necessary. The necessity to
average equally over all of them is not so obvious, rather it is assumed. (In passing one
can note that for a gas this point relates to the even coverage of classical phase-space
as mentioned above, in that quantum states are evenly dispersed through phase-space;
for example see Chapter 4.)

The second type of supporting argument is to treat the postulate as a ‘confession
of ignorance’, a common stratagem in quantum mechanics. Since we do not in fact
know which one of the � microstates the system is in at the time of interest, we simply
average equally over all possibilities, i.e. over all microstates. This is often called an
‘ensemble’ average, in that one can visualize it as replicating the measurement in a
whole set of identical systems and then averaging over the whole set (or ensemble).

One can note that the equality of ensemble and time averages implies a particular
kind of uniformity in a thermodynamic system. To give an allied social example,
consider the insurer’s problem. He wishes to charge a fair (sic) premium for life
insurance. Thus he requires an expectation of life for those currently alive, but he
cannot get this by following them with a stop-watch until they die. Rather, he can
look at biographical records in the mortuary in order to determine an expectation of
life (for the wrong sample) and hope for uniformity.

1.4 DISTRIBUTIONS

In attempting to average over all � microstates we still have a formidable problem. A
typical system (e.g. a mole of gas) is an assembly of N = 1024 particles. That is a large
enough number, but the number � of microstates is of order N N , an astronomically
large number. We must confess that knowledge of the system at the microstate level
is too detailed for us to handle, and therefore we should restrict our curiosity merely
to a distribution specification, defined below.

A distribution involves assigning individual (private) energies to each of the N par-
ticles. This is only sensible (or indeed possible) for an assembly of weakly interacting
particles. The reason is that we shall wish to express the total internal energy U of
the assembly as the sum of the individual energies of the N particles

U =
N∑

l=1

ε(l) (1.1)

where ε(l) is the energy of the lth particle. Any such expression implies that the
interaction energies between particles are much smaller than these (self) energies ε.
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Distributions 5

Actually any thermodynamic system must have some interaction between its parti-
cles, otherwise it would never reach equilibrium. The requirement rather is for the
interaction to be small enough for (1.1) to be valid, hence ‘weakly interacting’ rather
than ‘non-interacting’ particles.

Of course this restriction of approach is extremely limiting, although less so than
one might first suspect. Clearly, since the restriction is also one of the assumptions
of simple kinetic theory, our treatment will be useful for perfect gases. However,
it means that for a real fluid having strong interactions between molecules, i.e. an
imperfect gas or a liquid, the method cannot be applied. We shall return briefly to
this point in Chapter 14, but a full treatment of interacting particles is well outside
the scope of this book. At first sight it might seem that a description of solids is
also outside this framework, since interactions between atoms are obviously strong
in a solid. However, we shall see that many of the thermal properties of solids are
nevertheless to be understood from a model based on an assembly of N weakly inter-
acting particles, when one recognizes that these particles need not be the atoms, but
other appropriate entities. For example the particles can be phonons for a discussion
of lattice vibrations (Chapter 9); localized spins for a discussion of magnetic prop-
erties (Chapters 2 and 11); or conduction electrons for a description of metals and
semiconductors (Chapter 8).

A distribution then relates to the energies of a single particle. For each microstate
of the assembly of N identical weakly interacting particles, each particle is in an
identifiable one-particle state. In the distribution specification, intermediate in detail
between the macrostate and a microstate, we choose not to investigate which par-
ticles are in which states, but only to specify the total number of particles in the
states.

We shall use two alternative definitions of a distribution.

Definition 1 – Distribution in states This is a set of numbers (n1, n2, . . . , njn , . . .)
where the typical distribution number njn is defined as the number of particles in state
j, which has energy εjε . Often, but not always, this distribution will be an infinite set;
the label j must run over all the possible states for one particle. A useful shorthand
for the whole set of distribution numbers (n1, n2, . . . , njn , . . .) is simply {njn }.

The above definition is the one we shall adopt until we specifically discuss gases
(Chapter 4 onwards), at which stage an alternative, and somewhat less detailed,
definition becomes useful.

Definition 2 – Distribution in levels This is a set of numbers (n1, n2, . . . , ni, . . .) for
which the typical number ni is now defined as the number of particles in level i, which
has energy εi and degeneracy gi, the degeneracy being defined as the number of states
belonging to that level. The shorthand {ni} will be adopted for this distribution.

It is worth pointing out that the definition to be adopted is a matter of one’s choice.
The first definition is the more detailed, and is perfectly capable of handling the case
of degenerate levels – degeneracy simply means that not all the εjε s are different.
We shall reserve the label j for the states description and the label i for the levels
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6 Basic ideas

description; it is arguable that the n symbols should also be differentiated, but we
shall not do this.

Specifications – an example Before proceeding with physics, an all too familiar
example helps to clarify the difference between the three types of specification of a
system, the macrostate, the distribution, and the microstate.

The example concerns the marks of a class of students. The macrostate specification
is that the class of 51 students had an average mark of 55%. (No detail at all, but that’s
thermodynamics.) The microstate is quite unambiguous and clear; it will specify the
name of each of the 51 individuals and his/her mark. (Full detail, nowhere to hide!)
The definition of the distribution, as above, is to some extent a matter of choice. But
a typical distribution would give the number of students achieving marks in each
decade, a total of 10 distribution numbers. (Again all identity of individuals is lost,
but more statistical detail is retained than in the macrostate.)

1.5 THE STATISTICAL METHOD IN OUTLINE

The object of the exercise is now to use the fundamental averaging assumption about
microstates (section 1.3) to discover the particular distribution {njn } (section 1.4) which
best describes the thermal equilibrium properties of the system.

We are considering an isolated system consisting of a fixed number N of the iden-
tical weakly interacting particles contained in a fixed volume V and with a fixed
internal energy U . There are essentially four steps towards the statistical description
of this macrostate which we discuss in turn:

I. solve the one-particle problem;
II. enumerate possible distributions;

III. count the microstates corresponding to each distribution;
IV. find the average distribution.

1.5.1 The one-particle problem

This is a purely mechanical problem, and since it involves only one particle it is a
soluble problem for many cases of interest. The solution gives the states of a particle
which we label by j (= 0, 1, 2, …). The corresponding energies are εjε . We should note
that these energies depend on V (for a gas) or on V /N the volume per particle (for a
solid).

1.5.2 Possible distributions

The possible sets of distribution numbers {njn } can now be simply written down (given
appropriate patience, because usually there will be very many possibilities). However,
we give this relatively straightforward task a section of its own, in order to stress that
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