00 день 00 час 00 минут 00 секунд

Ваш последний шанс! Получите скидку 30% по промокоду «Литуз»!

Statistics and probability for engineering applications with Microsoft Excel

35990 UZS

-Do'stlaringizga tafsiya etish!

Описание

«Statistics and Probability for Engineering Applications with Microsoft Excel» pdf book offers a practical approach to mastering essential statistical and probabilistic concepts using the familiar tool of Microsoft Excel. This hands-on guide is tailored specifically for engineers, providing step-by-step instructions and real-world examples to facilitate learning and application.

Key Highlights:

  1. Excel-Based Learning: Leverage the power of Microsoft Excel to explore statistical analysis and probability theory, making complex concepts accessible and easy to understand.
  2. Practical Examples: Engage with practical examples and engineering applications throughout the book, enabling readers to bridge theory with real-world scenarios.
  3. Data Analysis Techniques: Learn how to perform data analysis, hypothesis testing, and regression analysis using Excel’s built-in functions and tools.
  4. Probability Modeling: Understand probability distributions, random variables, and probability models, and learn how to simulate engineering scenarios using Excel.
  5. Reliability Engineering: Explore reliability analysis techniques, including failure rate calculations, reliability functions, and system reliability assessment, all within the Excel environment.
  6. Quality Control and Process Improvement: Discover how to implement quality control measures and analyze process data to enhance efficiency and reliability in engineering processes.
  7. Visualizations and Reporting: Utilize Excel’s charting and graphing capabilities to create visual representations of data and communicate findings effectively.

Whether you’re a student learning the fundamentals or a practicing engineer looking to enhance your analytical skills, «Statistics and Probability for Engineering Applications with Microsoft Excel» provides a practical and accessible resource for mastering statistical and probabilistic techniques in engineering.

Детали

Количество листов:

419

Mundarija

Contents
Preface …………………………………………………………………………………… xi

What’s on the CD-ROM? ……………………………………………………….. xiii

List of Symbols ………………………………………………………………………. xv

1. Introduction: Probability and Statistics………………………………….. 1

1.1 Some Important Terms …………………………………………………………. 1

1.2 What does this book contain? ………………………………………………. 2

2. Basic Probability ………………………………………………………………….. 6

2.1 Fundamental Concepts ………………………………………………………… 6

2.2 Basic Rules of Combining Probabilities ………………………………….. 11

2.2.1 Addition Rule ………………………………………………………….. 11

2.2.2 Multiplication Rule …………………………………………………… 16

2.3 Permutations and Combinations ………………………………………….. 29

2.4 More Complex Problems: Bayes’ Rule …………………………………… 34

3. Descriptive Statistics: Summary Numbers …………………………….. 41

3.1 Central Location ……………………………………………………………….. 41

3.2 Variability or Spread of the Data …………………………………………… 44

3.3 Quartiles, Deciles, Percentiles, and Quantiles ………………………….. 51

3.4 Using a Computer to Calculate Summary Numbers …………………. 55

4. Grouped Frequencies and Graphical Descriptions ………………… 63

4.1 Stem-and-Leaf Displays ………………………………………………………. 63

4.2 Box Plots ………………………………………………………………………….. 65

4.3 Frequency Graphs of Discrete Data ………………………………………. 66

4.4 Continuous Data: Grouped Frequency ………………………………….. 66

4.5 Use of Computers ……………………………………………………………… 75

v
5. Probability Distributions of Discrete Variables ……………………… 84

5.1 Probability Functions and Distribution Functions …………………….. 85

(a) Probability Functions ……………………………………………………… 85

(b) Cumulative Distribution Functions …………………………………… 86

5.2 Expectation and Variance ……………………………………………………. 88

(a) Expectation of a Random Variable …………………………………… 88

(b) Variance of a Discrete Random Variable ……………………………. 89

(c) More Complex Problems ………………………………………………… 94

5.3 Binomial Distribution ……………………………………………………….. 101

(a) Illustration of the Binomial Distribution …………………………… 101

(b) Generalization of Results ……………………………………………… 102

(c) Application of the Binomial Distribution …………………………. 102

(d) Shape of the Binomial Distribution ………………………………… 104

(e) Expected Mean and Standard Deviation ………………………….. 105

(f) Use of Computers ………………………………………………………. 107

(g) Relation of Proportion to the Binomial Distribution …………… 108

(h) Nested Binomial Distributions ……………………………………….. 110

(i) Extension: Multinomial Distributions ………………………………. 111

5.4 Poisson Distribution …………………………………………………………. 117

(a) Calculation of Poisson Probabilities ………………………………… 118

(b) Mean and Variance for the Poisson Distribution ……………….. 123

(c) Approximation to the Binomial Distribution …………………….. 123

(d) Use of Computers ………………………………………………………. 125

5.5 Extension: Other Discrete Distributions ………………………………… 131

5.6 Relation Between Probability Distributions and

Frequency Distributions ……………………………………………………… 133

(a) Comparisons of a Probability Distribution with

Corresponding Simulated Frequency Distributions ……………. 133

(b) Fitting a Binomial Distribution ……………………………………….. 135

(c) Fitting a Poisson Distribution …………………………………………. 136

6. Probability Distributions of Continuous Variables ………………. 141

6.1 Probability from the Probability Density Function …………………… 141

6.2 Expected Value and Variance …………………………………………….. 149

6.3 Extension: Useful Continuous Distributions ………………………….. 155

6.4 Extension: Reliability …………………………………………………………. 156

vi
7. The Normal Distribution……………………………………………………. 157

7.1 Characteristics …………………………………………………………………. 157

7.2 Probability from the Probability Density Function …………………… 158

7.3 Using Tables for the Normal Distribution ……………………………… 161

7.4 Using the Computer ………………………………………………………… 173

7.5 Fitting the Normal Distribution to Frequency Data …………………. 175

7.6 Normal Approximation to a Binomial Distribution …………………. 178

7.7 Fitting the Normal Distribution to Cumulative

Frequency Data ……………………………………………………………….. 184

7.8 Transformation of Variables to Give a Normal Distribution ………. 190

8. Sampling and Combination of Variables ……………………………. 197

8.1 Sampling ……………………………………………………………………….. 197

8.2 Linear Combination of Independent Variables ………………………. 198

8.3 Variance of Sample Means ………………………………………………… 199

8.4 Shape of Distribution of Sample Means:

Central Limit Theorem ………………………………………………………. 205

9. Statistical Inferences for the Mean…………………………………….. 212

9.1 Inferences for the Mean when Variance Is Known …………………. 213

9.1.1 Test of Hypothesis ………………………………………………….. 213

9.1.2 Confidence Interval ………………………………………………… 221

9.2 Inferences for the Mean when Variance Is

Estimated from a Sample ………………………………………………….. 228

9.2.1 Confidence Interval Using the t-distribution ……………….. 232

9.2.2 Test of Significance: Comparing a Sample Mean

to a Population Mean …………………………………………….. 233

9.2.3 Comparison of Sample Means Using Unpaired Samples .. 234

9.2.4 Comparison of Paired Samples …………………………………. 238

10. Statistical Inferences for Variance and Proportion …………….. 248

10.1 Inferences for Variance ……………………………………………………… 248

10.1.1 Comparing a Sample Variance with a

Population Variance ……………………………………………….. 248

10.1.2 Comparing Two Sample Variances ……………………………. 252

10.2 Inferences for Proportion ………………………………………………….. 261

10.2.1 Proportion and the Binomial Distribution …………………… 261

vii
10.2.2 Test of Hypothesis for Proportion ……………………………… 261

10.2.3 Confidence Interval for Proportion ……………………………. 266

10.2.4 Extension ……………………………………………………………… 269

11. Introduction to Design of Experiments…………………………….. 272

11.1 Experimentation vs. Use of Routine Operating Data ………………. 273

11.2 Scale of Experimentation …………………………………………………… 273

11.3 One-factor-at-a-time vs. Factorial Design ……………………………… 274

11.4 Replication ……………………………………………………………………… 279

11.5 Bias Due to Interfering Factors …………………………………………… 279

(a) Some Examples of Interfering Factors ……………………………… 279

(b) Preventing Bias by Randomization …………………………………. 280

(c) Obtaining Random Numbers Using Excel ………………………… 284

(d) Preventing Bias by Blocking ………………………………………….. 285

11.6 Fractional Factorial Designs ……………………………………………….. 288

12. Introduction to Analysis of Variance ………………………………… 294

12.1 One-way Analysis of Variance ……………………………………………. 295

12.2 Two-way Analysis of Variance ……………………………………………. 304

12.3 Analysis of Randomized Block Design …………………………………. 316

12.4 Concluding Remarks ………………………………………………………… 320

13. Chi-squared Test for Frequency Distributions …………………… 324

13.1 Calculation of the Chi-squared Function ……………………………… 324

13.2 Case of Equal Probabilities ………………………………………………… 326

13.3 Goodness of Fit ……………………………………………………………….. 327

13.4 Contingency Tables ………………………………………………………….. 331

14. Regression and Correlation …………………………………………….. 341

14.1 Simple Linear Regression …………………………………………………… 342

14.2 Assumptions and Graphical Checks ……………………………………. 348

14.3 Statistical Inferences …………………………………………………………. 352

14.4 Other Forms with Single Input or Regressor …………………………. 361

14.5 Correlation …………………………………………………………………….. 364

14.6 Extension: Introduction to Multiple Linear Regression ……………. 367

viii
15. Sources of Further Information ……………………………………….. 373

15.1 Useful Reference Books ……………………………………………………. 373

15.2 List of Selected References ………………………………………………… 374

Appendices ………………………………………………………………………….. 375

Appendix A: Tables ………………………………………………………………….. 376

Appendix B: Some Properties of Excel Useful

Appendix C: Functions Useful Once the

During the Learning Process ………………………………………………. 382

Fundamentals Are Understood…………………………………………… 386

Appendix D: Answers to Some of the Problems ……………………………. 387

Engineering Problem-Solver Index ……………………………………….. 391

Index …………………………………………………………………………………… 393

Отзывы

Отзывов пока нет.

Будьте первым, кто оставил отзыв на “Statistics and probability for engineering applications with Microsoft Excel”

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожие книги

Домашняя страница
Э-Книги
0
Cart
Моя страница